Optimal. Leaf size=17 \[ \log \left (\frac {1}{16} e^{-4 e^x (-1+\log (2))} x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 14, normalized size of antiderivative = 0.82, number of steps used = 3, number of rules used = 2, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {14, 2194} \begin {gather*} \log (x)+4 e^x (1-\log (2)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1}{x}-4 e^x (-1+\log (2))\right ) \, dx\\ &=\log (x)-(4 (-1+\log (2))) \int e^x \, dx\\ &=4 e^x (1-\log (2))+\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 12, normalized size = 0.71 \begin {gather*} -4 e^x (-1+\log (2))+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 11, normalized size = 0.65 \begin {gather*} -4 \, {\left (\log \relax (2) - 1\right )} e^{x} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 13, normalized size = 0.76 \begin {gather*} -4 \, e^{x} \log \relax (2) + 4 \, e^{x} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 13, normalized size = 0.76
method | result | size |
norman | \(\left (-4 \ln \relax (2)+4\right ) {\mathrm e}^{x}+\ln \relax (x )\) | \(13\) |
default | \(\ln \relax (x )-4 \,{\mathrm e}^{x} \ln \relax (2)+4 \,{\mathrm e}^{x}\) | \(14\) |
risch | \(\ln \relax (x )-4 \,{\mathrm e}^{x} \ln \relax (2)+4 \,{\mathrm e}^{x}\) | \(14\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.34, size = 13, normalized size = 0.76 \begin {gather*} -4 \, e^{x} \log \relax (2) + 4 \, e^{x} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.05, size = 11, normalized size = 0.65 \begin {gather*} \ln \relax (x)-{\mathrm {e}}^x\,\left (\ln \left (16\right )-4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 12, normalized size = 0.71 \begin {gather*} \left (4 - 4 \log {\relax (2 )}\right ) e^{x} + \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________