Optimal. Leaf size=24 \[ -\frac {1}{3}+x+\left (-x+\log \left (2-e^{e^x}-x\right )\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 2.83, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2-5 x+2 x^2+e^{e^x} \left (1+2 x-2 e^x x\right )+\left (6+e^{e^x} \left (-2+2 e^x\right )-2 x\right ) \log \left (2-e^{e^x}-x\right )}{-2+e^{e^x}+x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {2}{-2+e^{e^x}+x}+\frac {e^{e^x}}{-2+e^{e^x}+x}-\frac {5 x}{-2+e^{e^x}+x}+\frac {2 e^{e^x} x}{-2+e^{e^x}+x}+\frac {2 x^2}{-2+e^{e^x}+x}-\frac {2 e^{e^x+x} \left (x-\log \left (2-e^{e^x}-x\right )\right )}{-2+e^{e^x}+x}+\frac {6 \log \left (2-e^{e^x}-x\right )}{-2+e^{e^x}+x}-\frac {2 e^{e^x} \log \left (2-e^{e^x}-x\right )}{-2+e^{e^x}+x}-\frac {2 x \log \left (2-e^{e^x}-x\right )}{-2+e^{e^x}+x}\right ) \, dx\\ &=-\left (2 \int \frac {1}{-2+e^{e^x}+x} \, dx\right )+2 \int \frac {e^{e^x} x}{-2+e^{e^x}+x} \, dx+2 \int \frac {x^2}{-2+e^{e^x}+x} \, dx-2 \int \frac {e^{e^x+x} \left (x-\log \left (2-e^{e^x}-x\right )\right )}{-2+e^{e^x}+x} \, dx-2 \int \frac {e^{e^x} \log \left (2-e^{e^x}-x\right )}{-2+e^{e^x}+x} \, dx-2 \int \frac {x \log \left (2-e^{e^x}-x\right )}{-2+e^{e^x}+x} \, dx-5 \int \frac {x}{-2+e^{e^x}+x} \, dx+6 \int \frac {\log \left (2-e^{e^x}-x\right )}{-2+e^{e^x}+x} \, dx+\int \frac {e^{e^x}}{-2+e^{e^x}+x} \, dx\\ &=-\left (2 \int \frac {1}{-2+e^{e^x}+x} \, dx\right )+2 \int \frac {e^{e^x} x}{-2+e^{e^x}+x} \, dx+2 \int \frac {x^2}{-2+e^{e^x}+x} \, dx-2 \int \left (\frac {e^{e^x+x} x}{-2+e^{e^x}+x}-\frac {e^{e^x+x} \log \left (2-e^{e^x}-x\right )}{-2+e^{e^x}+x}\right ) \, dx+2 \int \frac {\left (-1-e^{e^x+x}\right ) \int \frac {e^{e^x}}{-2+e^{e^x}+x} \, dx}{2-e^{e^x}-x} \, dx+2 \int \frac {\left (-1-e^{e^x+x}\right ) \int \frac {x}{-2+e^{e^x}+x} \, dx}{2-e^{e^x}-x} \, dx-5 \int \frac {x}{-2+e^{e^x}+x} \, dx-6 \int \frac {\left (-1-e^{e^x+x}\right ) \int \frac {1}{-2+e^{e^x}+x} \, dx}{2-e^{e^x}-x} \, dx-\left (2 \log \left (2-e^{e^x}-x\right )\right ) \int \frac {e^{e^x}}{-2+e^{e^x}+x} \, dx-\left (2 \log \left (2-e^{e^x}-x\right )\right ) \int \frac {x}{-2+e^{e^x}+x} \, dx+\left (6 \log \left (2-e^{e^x}-x\right )\right ) \int \frac {1}{-2+e^{e^x}+x} \, dx+\int \frac {e^{e^x}}{-2+e^{e^x}+x} \, dx\\ &=-\left (2 \int \frac {1}{-2+e^{e^x}+x} \, dx\right )+2 \int \frac {e^{e^x} x}{-2+e^{e^x}+x} \, dx-2 \int \frac {e^{e^x+x} x}{-2+e^{e^x}+x} \, dx+2 \int \frac {x^2}{-2+e^{e^x}+x} \, dx+2 \int \frac {e^{e^x+x} \log \left (2-e^{e^x}-x\right )}{-2+e^{e^x}+x} \, dx+2 \int \left (\frac {\int \frac {e^{e^x}}{-2+e^{e^x}+x} \, dx}{-2+e^{e^x}+x}+\frac {e^{e^x+x} \int \frac {e^{e^x}}{-2+e^{e^x}+x} \, dx}{-2+e^{e^x}+x}\right ) \, dx+2 \int \left (\frac {\int \frac {x}{-2+e^{e^x}+x} \, dx}{-2+e^{e^x}+x}+\frac {e^{e^x+x} \int \frac {x}{-2+e^{e^x}+x} \, dx}{-2+e^{e^x}+x}\right ) \, dx-5 \int \frac {x}{-2+e^{e^x}+x} \, dx-6 \int \left (\frac {\int \frac {1}{-2+e^{e^x}+x} \, dx}{-2+e^{e^x}+x}+\frac {e^{e^x+x} \int \frac {1}{-2+e^{e^x}+x} \, dx}{-2+e^{e^x}+x}\right ) \, dx-\left (2 \log \left (2-e^{e^x}-x\right )\right ) \int \frac {e^{e^x}}{-2+e^{e^x}+x} \, dx-\left (2 \log \left (2-e^{e^x}-x\right )\right ) \int \frac {x}{-2+e^{e^x}+x} \, dx+\left (6 \log \left (2-e^{e^x}-x\right )\right ) \int \frac {1}{-2+e^{e^x}+x} \, dx+\int \frac {e^{e^x}}{-2+e^{e^x}+x} \, dx\\ &=-\left (2 \int \frac {1}{-2+e^{e^x}+x} \, dx\right )+2 \int \frac {e^{e^x} x}{-2+e^{e^x}+x} \, dx-2 \int \frac {e^{e^x+x} x}{-2+e^{e^x}+x} \, dx+2 \int \frac {x^2}{-2+e^{e^x}+x} \, dx+2 \int \frac {\int \frac {e^{e^x}}{-2+e^{e^x}+x} \, dx}{-2+e^{e^x}+x} \, dx+2 \int \frac {e^{e^x+x} \int \frac {e^{e^x}}{-2+e^{e^x}+x} \, dx}{-2+e^{e^x}+x} \, dx-2 \int \frac {\left (-1-e^{e^x+x}\right ) \int \frac {e^{e^x+x}}{-2+e^{e^x}+x} \, dx}{2-e^{e^x}-x} \, dx+2 \int \frac {\int \frac {x}{-2+e^{e^x}+x} \, dx}{-2+e^{e^x}+x} \, dx+2 \int \frac {e^{e^x+x} \int \frac {x}{-2+e^{e^x}+x} \, dx}{-2+e^{e^x}+x} \, dx-5 \int \frac {x}{-2+e^{e^x}+x} \, dx-6 \int \frac {\int \frac {1}{-2+e^{e^x}+x} \, dx}{-2+e^{e^x}+x} \, dx-6 \int \frac {e^{e^x+x} \int \frac {1}{-2+e^{e^x}+x} \, dx}{-2+e^{e^x}+x} \, dx-\left (2 \log \left (2-e^{e^x}-x\right )\right ) \int \frac {e^{e^x}}{-2+e^{e^x}+x} \, dx+\left (2 \log \left (2-e^{e^x}-x\right )\right ) \int \frac {e^{e^x+x}}{-2+e^{e^x}+x} \, dx-\left (2 \log \left (2-e^{e^x}-x\right )\right ) \int \frac {x}{-2+e^{e^x}+x} \, dx+\left (6 \log \left (2-e^{e^x}-x\right )\right ) \int \frac {1}{-2+e^{e^x}+x} \, dx+\int \frac {e^{e^x}}{-2+e^{e^x}+x} \, dx\\ &=-\left (2 \int \frac {1}{-2+e^{e^x}+x} \, dx\right )+2 \int \frac {e^{e^x} x}{-2+e^{e^x}+x} \, dx-2 \int \frac {e^{e^x+x} x}{-2+e^{e^x}+x} \, dx+2 \int \frac {x^2}{-2+e^{e^x}+x} \, dx+2 \int \frac {\int \frac {e^{e^x}}{-2+e^{e^x}+x} \, dx}{-2+e^{e^x}+x} \, dx+2 \int \frac {e^{e^x+x} \int \frac {e^{e^x}}{-2+e^{e^x}+x} \, dx}{-2+e^{e^x}+x} \, dx-2 \int \left (\frac {\int \frac {e^{e^x+x}}{-2+e^{e^x}+x} \, dx}{-2+e^{e^x}+x}+\frac {e^{e^x+x} \int \frac {e^{e^x+x}}{-2+e^{e^x}+x} \, dx}{-2+e^{e^x}+x}\right ) \, dx+2 \int \frac {\int \frac {x}{-2+e^{e^x}+x} \, dx}{-2+e^{e^x}+x} \, dx+2 \int \frac {e^{e^x+x} \int \frac {x}{-2+e^{e^x}+x} \, dx}{-2+e^{e^x}+x} \, dx-5 \int \frac {x}{-2+e^{e^x}+x} \, dx-6 \int \frac {\int \frac {1}{-2+e^{e^x}+x} \, dx}{-2+e^{e^x}+x} \, dx-6 \int \frac {e^{e^x+x} \int \frac {1}{-2+e^{e^x}+x} \, dx}{-2+e^{e^x}+x} \, dx-\left (2 \log \left (2-e^{e^x}-x\right )\right ) \int \frac {e^{e^x}}{-2+e^{e^x}+x} \, dx+\left (2 \log \left (2-e^{e^x}-x\right )\right ) \int \frac {e^{e^x+x}}{-2+e^{e^x}+x} \, dx-\left (2 \log \left (2-e^{e^x}-x\right )\right ) \int \frac {x}{-2+e^{e^x}+x} \, dx+\left (6 \log \left (2-e^{e^x}-x\right )\right ) \int \frac {1}{-2+e^{e^x}+x} \, dx+\int \frac {e^{e^x}}{-2+e^{e^x}+x} \, dx\\ &=-\left (2 \int \frac {1}{-2+e^{e^x}+x} \, dx\right )+2 \int \frac {e^{e^x} x}{-2+e^{e^x}+x} \, dx-2 \int \frac {e^{e^x+x} x}{-2+e^{e^x}+x} \, dx+2 \int \frac {x^2}{-2+e^{e^x}+x} \, dx+2 \int \frac {\int \frac {e^{e^x}}{-2+e^{e^x}+x} \, dx}{-2+e^{e^x}+x} \, dx+2 \int \frac {e^{e^x+x} \int \frac {e^{e^x}}{-2+e^{e^x}+x} \, dx}{-2+e^{e^x}+x} \, dx-2 \int \frac {\int \frac {e^{e^x+x}}{-2+e^{e^x}+x} \, dx}{-2+e^{e^x}+x} \, dx-2 \int \frac {e^{e^x+x} \int \frac {e^{e^x+x}}{-2+e^{e^x}+x} \, dx}{-2+e^{e^x}+x} \, dx+2 \int \frac {\int \frac {x}{-2+e^{e^x}+x} \, dx}{-2+e^{e^x}+x} \, dx+2 \int \frac {e^{e^x+x} \int \frac {x}{-2+e^{e^x}+x} \, dx}{-2+e^{e^x}+x} \, dx-5 \int \frac {x}{-2+e^{e^x}+x} \, dx-6 \int \frac {\int \frac {1}{-2+e^{e^x}+x} \, dx}{-2+e^{e^x}+x} \, dx-6 \int \frac {e^{e^x+x} \int \frac {1}{-2+e^{e^x}+x} \, dx}{-2+e^{e^x}+x} \, dx-\left (2 \log \left (2-e^{e^x}-x\right )\right ) \int \frac {e^{e^x}}{-2+e^{e^x}+x} \, dx+\left (2 \log \left (2-e^{e^x}-x\right )\right ) \int \frac {e^{e^x+x}}{-2+e^{e^x}+x} \, dx-\left (2 \log \left (2-e^{e^x}-x\right )\right ) \int \frac {x}{-2+e^{e^x}+x} \, dx+\left (6 \log \left (2-e^{e^x}-x\right )\right ) \int \frac {1}{-2+e^{e^x}+x} \, dx+\int \frac {e^{e^x}}{-2+e^{e^x}+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.37, size = 36, normalized size = 1.50 \begin {gather*} x+x^2-2 x \log \left (2-e^{e^x}-x\right )+\log ^2\left (2-e^{e^x}-x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.91, size = 32, normalized size = 1.33 \begin {gather*} x^{2} - 2 \, x \log \left (-x - e^{\left (e^{x}\right )} + 2\right ) + \log \left (-x - e^{\left (e^{x}\right )} + 2\right )^{2} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, x^{2} - {\left (2 \, x e^{x} - 2 \, x - 1\right )} e^{\left (e^{x}\right )} + 2 \, {\left ({\left (e^{x} - 1\right )} e^{\left (e^{x}\right )} - x + 3\right )} \log \left (-x - e^{\left (e^{x}\right )} + 2\right ) - 5 \, x - 2}{x + e^{\left (e^{x}\right )} - 2}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 33, normalized size = 1.38
method | result | size |
risch | \(x^{2}-2 \ln \left (-{\mathrm e}^{{\mathrm e}^{x}}+2-x \right ) x +\ln \left (-{\mathrm e}^{{\mathrm e}^{x}}+2-x \right )^{2}+x\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.66, size = 32, normalized size = 1.33 \begin {gather*} x^{2} - 2 \, x \log \left (-x - e^{\left (e^{x}\right )} + 2\right ) + \log \left (-x - e^{\left (e^{x}\right )} + 2\right )^{2} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.15, size = 32, normalized size = 1.33 \begin {gather*} x^2-2\,x\,\ln \left (2-{\mathrm {e}}^{{\mathrm {e}}^x}-x\right )+x+{\ln \left (2-{\mathrm {e}}^{{\mathrm {e}}^x}-x\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.51, size = 29, normalized size = 1.21 \begin {gather*} x^{2} - 2 x \log {\left (- x - e^{e^{x}} + 2 \right )} + x + \log {\left (- x - e^{e^{x}} + 2 \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________