Optimal. Leaf size=22 \[ -2+\frac {1}{4} e^{e^{-2 x}}+(9-x) x^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 22, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.147, Rules used = {12, 6688, 2282, 2194, 43} \begin {gather*} -x^3+9 x^2+\frac {1}{4} e^{e^{-2 x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 43
Rule 2194
Rule 2282
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int e^{-2 x} \left (-e^{e^{-2 x}}+e^{2 x} \left (36 x-6 x^2\right )\right ) \, dx\\ &=\frac {1}{2} \int \left (-e^{e^{-2 x}-2 x}-6 (-6+x) x\right ) \, dx\\ &=-\left (\frac {1}{2} \int e^{e^{-2 x}-2 x} \, dx\right )-3 \int (-6+x) x \, dx\\ &=\frac {1}{4} \operatorname {Subst}\left (\int e^x \, dx,x,e^{-2 x}\right )-3 \int \left (-6 x+x^2\right ) \, dx\\ &=\frac {1}{4} e^{e^{-2 x}}+9 x^2-x^3\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 22, normalized size = 1.00 \begin {gather*} \frac {1}{4} e^{e^{-2 x}}+9 x^2-x^3 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 18, normalized size = 0.82 \begin {gather*} -x^{3} + 9 \, x^{2} + \frac {1}{4} \, e^{\left (e^{\left (-2 \, x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.36, size = 36, normalized size = 1.64 \begin {gather*} -\frac {1}{4} \, {\left (4 \, x^{3} e^{\left (-2 \, x\right )} - 36 \, x^{2} e^{\left (-2 \, x\right )} - e^{\left (-2 \, x + e^{\left (-2 \, x\right )}\right )}\right )} e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 19, normalized size = 0.86
method | result | size |
default | \(-x^{3}+9 x^{2}+\frac {{\mathrm e}^{{\mathrm e}^{-2 x}}}{4}\) | \(19\) |
risch | \(-x^{3}+9 x^{2}+\frac {{\mathrm e}^{{\mathrm e}^{-2 x}}}{4}\) | \(19\) |
norman | \(\left (9 \,{\mathrm e}^{2 x} x^{2}-{\mathrm e}^{2 x} x^{3}+\frac {{\mathrm e}^{2 x} {\mathrm e}^{{\mathrm e}^{-2 x}}}{4}\right ) {\mathrm e}^{-2 x}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.78, size = 18, normalized size = 0.82 \begin {gather*} -x^{3} + 9 \, x^{2} + \frac {1}{4} \, e^{\left (e^{\left (-2 \, x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.43, size = 18, normalized size = 0.82 \begin {gather*} \frac {{\mathrm {e}}^{{\mathrm {e}}^{-2\,x}}}{4}+9\,x^2-x^3 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 17, normalized size = 0.77 \begin {gather*} - x^{3} + 9 x^{2} + \frac {e^{e^{- 2 x}}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________