Optimal. Leaf size=21 \[ \frac {8 e^{\frac {17}{4}+2 x} x^2}{10-x} \]
________________________________________________________________________________________
Rubi [A] time = 0.23, antiderivative size = 42, normalized size of antiderivative = 2.00, number of steps used = 10, number of rules used = 7, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.184, Rules used = {27, 1594, 2199, 2194, 2177, 2178, 2176} \begin {gather*} -8 e^{2 x+\frac {17}{4}} x-80 e^{2 x+\frac {17}{4}}+\frac {800 e^{2 x+\frac {17}{4}}}{10-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 1594
Rule 2176
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{2+\frac {1}{4} (9+8 x)} \left (160 x+152 x^2-16 x^3\right )}{(-10+x)^2} \, dx\\ &=\int \frac {e^{2+\frac {1}{4} (9+8 x)} x \left (160+152 x-16 x^2\right )}{(-10+x)^2} \, dx\\ &=\int \left (-168 e^{\frac {17}{4}+2 x}+\frac {800 e^{\frac {17}{4}+2 x}}{(-10+x)^2}-\frac {1600 e^{\frac {17}{4}+2 x}}{-10+x}-16 e^{\frac {17}{4}+2 x} x\right ) \, dx\\ &=-\left (16 \int e^{\frac {17}{4}+2 x} x \, dx\right )-168 \int e^{\frac {17}{4}+2 x} \, dx+800 \int \frac {e^{\frac {17}{4}+2 x}}{(-10+x)^2} \, dx-1600 \int \frac {e^{\frac {17}{4}+2 x}}{-10+x} \, dx\\ &=-84 e^{\frac {17}{4}+2 x}+\frac {800 e^{\frac {17}{4}+2 x}}{10-x}-8 e^{\frac {17}{4}+2 x} x-1600 e^{97/4} \text {Ei}(-2 (10-x))+8 \int e^{\frac {17}{4}+2 x} \, dx+1600 \int \frac {e^{\frac {17}{4}+2 x}}{-10+x} \, dx\\ &=-80 e^{\frac {17}{4}+2 x}+\frac {800 e^{\frac {17}{4}+2 x}}{10-x}-8 e^{\frac {17}{4}+2 x} x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 19, normalized size = 0.90 \begin {gather*} -\frac {8 e^{\frac {17}{4}+2 x} x^2}{-10+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.84, size = 16, normalized size = 0.76 \begin {gather*} -\frac {8 \, x^{2} e^{\left (2 \, x + \frac {17}{4}\right )}}{x - 10} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 16, normalized size = 0.76 \begin {gather*} -\frac {8 \, x^{2} e^{\left (2 \, x + \frac {17}{4}\right )}}{x - 10} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 17, normalized size = 0.81
method | result | size |
gosper | \(-\frac {8 x^{2} {\mathrm e}^{\frac {17}{4}+2 x}}{x -10}\) | \(17\) |
risch | \(-\frac {8 x^{2} {\mathrm e}^{\frac {17}{4}+2 x}}{x -10}\) | \(17\) |
norman | \(-\frac {8 x^{2} {\mathrm e}^{2} {\mathrm e}^{2 x +\frac {9}{4}}}{x -10}\) | \(19\) |
derivativedivides | \(4 \,{\mathrm e}^{2} \left (-\frac {400 \,{\mathrm e}^{2 x +\frac {9}{4}}}{2 x -20}-\frac {71 \,{\mathrm e}^{2 x +\frac {9}{4}}}{4}-{\mathrm e}^{2 x +\frac {9}{4}} \left (2 x +\frac {9}{4}\right )\right )\) | \(42\) |
default | \(8 \,{\mathrm e}^{2} \left (-\frac {200 \,{\mathrm e}^{2 x +\frac {9}{4}}}{2 x -20}-\frac {71 \,{\mathrm e}^{2 x +\frac {9}{4}}}{8}-\frac {{\mathrm e}^{2 x +\frac {9}{4}} \left (2 x +\frac {9}{4}\right )}{2}\right )\) | \(42\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 16, normalized size = 0.76 \begin {gather*} -\frac {8 \, x^{2} e^{\left (2 \, x + \frac {17}{4}\right )}}{x - 10} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.26, size = 16, normalized size = 0.76 \begin {gather*} -\frac {8\,x^2\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{17/4}}{x-10} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 20, normalized size = 0.95 \begin {gather*} - \frac {8 x^{2} e^{2} e^{2 x + \frac {9}{4}}}{x - 10} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________