Optimal. Leaf size=29 \[ \frac {2}{9} e^{\log ^2(4+2 x)} \log \left (\left (5-\left (-2+\frac {3}{x}\right ) x\right )^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 41, normalized size of antiderivative = 1.41, number of steps used = 1, number of rules used = 1, integrand size = 51, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.020, Rules used = {2288} \begin {gather*} \frac {2 (x+1) (x+2) e^{\log ^2(2 x+4)} \log \left (4 x^2+8 x+4\right )}{9 \left (x^2+3 x+2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {2 e^{\log ^2(4+2 x)} (1+x) (2+x) \log \left (4+8 x+4 x^2\right )}{9 \left (2+3 x+x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 22, normalized size = 0.76 \begin {gather*} \frac {2}{9} e^{\log ^2(2 (2+x))} \log \left (4 (1+x)^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 22, normalized size = 0.76 \begin {gather*} \frac {2}{9} \, e^{\left (\log \left (2 \, x + 4\right )^{2}\right )} \log \left (4 \, x^{2} + 8 \, x + 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.20, size = 56, normalized size = 1.93 \begin {gather*} \frac {4}{9} \, e^{\left (\log \relax (2)^{2} + 2 \, \log \relax (2) \log \left (x + 2\right ) + \log \left (x + 2\right )^{2}\right )} \log \relax (2) + \frac {2}{9} \, e^{\left (\log \relax (2)^{2} + 2 \, \log \relax (2) \log \left (x + 2\right ) + \log \left (x + 2\right )^{2}\right )} \log \left (x^{2} + 2 \, x + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.12, size = 81, normalized size = 2.79
method | result | size |
risch | \(\left (-\frac {i \pi \mathrm {csgn}\left (i \left (x +1\right )\right )^{2} \mathrm {csgn}\left (i \left (x +1\right )^{2}\right )}{9}+\frac {2 i \pi \,\mathrm {csgn}\left (i \left (x +1\right )\right ) \mathrm {csgn}\left (i \left (x +1\right )^{2}\right )^{2}}{9}-\frac {i \pi \mathrm {csgn}\left (i \left (x +1\right )^{2}\right )^{3}}{9}+\frac {4 \ln \relax (2)}{9}+\frac {4 \ln \left (x +1\right )}{9}\right ) {\mathrm e}^{\ln \left (2 x +4\right )^{2}}\) | \(81\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 37, normalized size = 1.28 \begin {gather*} \frac {4}{9} \, {\left (e^{\left (\log \relax (2)^{2}\right )} \log \relax (2) + e^{\left (\log \relax (2)^{2}\right )} \log \left (x + 1\right )\right )} e^{\left (2 \, \log \relax (2) \log \left (x + 2\right ) + \log \left (x + 2\right )^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.24, size = 22, normalized size = 0.76 \begin {gather*} \frac {2\,{\mathrm {e}}^{{\ln \left (2\,x+4\right )}^2}\,\ln \left (4\,x^2+8\,x+4\right )}{9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 6.86, size = 24, normalized size = 0.83 \begin {gather*} \frac {2 e^{\log {\left (2 x + 4 \right )}^{2}} \log {\left (4 x^{2} + 8 x + 4 \right )}}{9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________