Optimal. Leaf size=22 \[ 2 x-\frac {1}{5} \left (1-e^{28 x/5}\right ) x \log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 42, normalized size of antiderivative = 1.91, number of steps used = 7, number of rules used = 4, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {12, 2194, 2176, 2554} \begin {gather*} 2 x-\frac {1}{5} x \log (x)-\frac {1}{28} e^{28 x/5} \log (x)+\frac {1}{140} e^{28 x/5} (28 x+5) \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 2554
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{25} \int \left (45+5 e^{28 x/5}+\left (-5+e^{28 x/5} (5+28 x)\right ) \log (x)\right ) \, dx\\ &=\frac {9 x}{5}+\frac {1}{25} \int \left (-5+e^{28 x/5} (5+28 x)\right ) \log (x) \, dx+\frac {1}{5} \int e^{28 x/5} \, dx\\ &=\frac {1}{28} e^{28 x/5}+\frac {9 x}{5}-\frac {1}{28} e^{28 x/5} \log (x)-\frac {1}{5} x \log (x)+\frac {1}{140} e^{28 x/5} (5+28 x) \log (x)-\frac {1}{25} \int 5 \left (-1+e^{28 x/5}\right ) \, dx\\ &=\frac {1}{28} e^{28 x/5}+\frac {9 x}{5}-\frac {1}{28} e^{28 x/5} \log (x)-\frac {1}{5} x \log (x)+\frac {1}{140} e^{28 x/5} (5+28 x) \log (x)-\frac {1}{5} \int \left (-1+e^{28 x/5}\right ) \, dx\\ &=\frac {1}{28} e^{28 x/5}+2 x-\frac {1}{28} e^{28 x/5} \log (x)-\frac {1}{5} x \log (x)+\frac {1}{140} e^{28 x/5} (5+28 x) \log (x)-\frac {1}{5} \int e^{28 x/5} \, dx\\ &=2 x-\frac {1}{28} e^{28 x/5} \log (x)-\frac {1}{5} x \log (x)+\frac {1}{140} e^{28 x/5} (5+28 x) \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 22, normalized size = 1.00 \begin {gather*} \frac {1}{25} \left (50 x+5 \left (-1+e^{28 x/5}\right ) x \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.02, size = 18, normalized size = 0.82 \begin {gather*} \frac {1}{5} \, {\left (x e^{\left (\frac {28}{5} \, x\right )} - x\right )} \log \relax (x) + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 18, normalized size = 0.82 \begin {gather*} \frac {1}{5} \, {\left (x e^{\left (\frac {28}{5} \, x\right )} - x\right )} \log \relax (x) + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 19, normalized size = 0.86
method | result | size |
default | \(2 x +\frac {{\mathrm e}^{\frac {28 x}{5}} \ln \relax (x ) x}{5}-\frac {x \ln \relax (x )}{5}\) | \(19\) |
norman | \(2 x +\frac {{\mathrm e}^{\frac {28 x}{5}} \ln \relax (x ) x}{5}-\frac {x \ln \relax (x )}{5}\) | \(19\) |
risch | \(\frac {\left (5 \,{\mathrm e}^{\frac {28 x}{5}} x -5 x \right ) \ln \relax (x )}{25}+2 x\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.34, size = 18, normalized size = 0.82 \begin {gather*} \frac {1}{5} \, {\left (x e^{\left (\frac {28}{5} \, x\right )} - x\right )} \log \relax (x) + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.22, size = 16, normalized size = 0.73 \begin {gather*} \frac {x\,\left ({\mathrm {e}}^{\frac {28\,x}{5}}\,\ln \relax (x)-\ln \relax (x)+10\right )}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 22, normalized size = 1.00 \begin {gather*} \frac {x e^{\frac {28 x}{5}} \log {\relax (x )}}{5} - \frac {x \log {\relax (x )}}{5} + 2 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________