Optimal. Leaf size=23 \[ 4 \left (x-\frac {e^{(-2+4 x+\log (x))^2} (8+x)}{x}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 3.28, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4 x^2+\exp \left (4-16 x+16 x^2+(-4+8 x) \log (x)+\log ^2(x)\right ) \left (160+272 x-992 x^2-128 x^3+\left (-64-264 x-32 x^2\right ) \log (x)\right )}{x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (4-8 e^{4 (1-2 x)^2+\log ^2(x)} x^{-6+8 x} \left (-20-34 x+124 x^2+16 x^3+8 \log (x)+33 x \log (x)+4 x^2 \log (x)\right )\right ) \, dx\\ &=4 x-8 \int e^{4 (1-2 x)^2+\log ^2(x)} x^{-6+8 x} \left (-20-34 x+124 x^2+16 x^3+8 \log (x)+33 x \log (x)+4 x^2 \log (x)\right ) \, dx\\ &=4 x-8 \int \left (-20 e^{4 (1-2 x)^2+\log ^2(x)} x^{-6+8 x}-34 e^{4 (1-2 x)^2+\log ^2(x)} x^{-5+8 x}+124 e^{4 (1-2 x)^2+\log ^2(x)} x^{-4+8 x}+16 e^{4 (1-2 x)^2+\log ^2(x)} x^{-3+8 x}+8 e^{4 (1-2 x)^2+\log ^2(x)} x^{-6+8 x} \log (x)+33 e^{4 (1-2 x)^2+\log ^2(x)} x^{-5+8 x} \log (x)+4 e^{4 (1-2 x)^2+\log ^2(x)} x^{-4+8 x} \log (x)\right ) \, dx\\ &=4 x-32 \int e^{4 (1-2 x)^2+\log ^2(x)} x^{-4+8 x} \log (x) \, dx-64 \int e^{4 (1-2 x)^2+\log ^2(x)} x^{-6+8 x} \log (x) \, dx-128 \int e^{4 (1-2 x)^2+\log ^2(x)} x^{-3+8 x} \, dx+160 \int e^{4 (1-2 x)^2+\log ^2(x)} x^{-6+8 x} \, dx-264 \int e^{4 (1-2 x)^2+\log ^2(x)} x^{-5+8 x} \log (x) \, dx+272 \int e^{4 (1-2 x)^2+\log ^2(x)} x^{-5+8 x} \, dx-992 \int e^{4 (1-2 x)^2+\log ^2(x)} x^{-4+8 x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.48, size = 46, normalized size = 2.00 \begin {gather*} 4 x-\frac {4 e^{4-16 x+16 x^2+\log ^2(x)} x^{-5+8 x} \left (8+33 x+4 x^2\right )}{1+4 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 38, normalized size = 1.65 \begin {gather*} \frac {4 \, {\left (x^{2} - {\left (x + 8\right )} e^{\left (16 \, x^{2} + 4 \, {\left (2 \, x - 1\right )} \log \relax (x) + \log \relax (x)^{2} - 16 \, x + 4\right )}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.23, size = 62, normalized size = 2.70 \begin {gather*} \frac {4 \, {\left (x^{2} - x e^{\left (16 \, x^{2} + 8 \, x \log \relax (x) + \log \relax (x)^{2} - 16 \, x - 4 \, \log \relax (x) + 4\right )} - 8 \, e^{\left (16 \, x^{2} + 8 \, x \log \relax (x) + \log \relax (x)^{2} - 16 \, x - 4 \, \log \relax (x) + 4\right )}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 35, normalized size = 1.52
method | result | size |
risch | \(4 x -\frac {4 \left (x +8\right ) x^{8 x -4} {\mathrm e}^{\ln \relax (x )^{2}+4+16 x^{2}-16 x}}{x}\) | \(35\) |
default | \(4 x +\frac {-4 x \,{\mathrm e}^{\ln \relax (x )^{2}+\left (8 x -4\right ) \ln \relax (x )+16 x^{2}-16 x +4}-32 \,{\mathrm e}^{\ln \relax (x )^{2}+\left (8 x -4\right ) \ln \relax (x )+16 x^{2}-16 x +4}}{x}\) | \(61\) |
norman | \(\frac {4 x^{2}-4 x \,{\mathrm e}^{\ln \relax (x )^{2}+\left (8 x -4\right ) \ln \relax (x )+16 x^{2}-16 x +4}-32 \,{\mathrm e}^{\ln \relax (x )^{2}+\left (8 x -4\right ) \ln \relax (x )+16 x^{2}-16 x +4}}{x}\) | \(62\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 37, normalized size = 1.61 \begin {gather*} 4 \, x - \frac {4 \, {\left (x e^{4} + 8 \, e^{4}\right )} e^{\left (16 \, x^{2} + 8 \, x \log \relax (x) + \log \relax (x)^{2} - 16 \, x\right )}}{x^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.31, size = 58, normalized size = 2.52 \begin {gather*} 4\,x-\frac {4\,x^{8\,x}\,{\mathrm {e}}^{-16\,x}\,{\mathrm {e}}^4\,{\mathrm {e}}^{16\,x^2}\,{\mathrm {e}}^{{\ln \relax (x)}^2}}{x^4}-\frac {32\,x^{8\,x}\,{\mathrm {e}}^{-16\,x}\,{\mathrm {e}}^4\,{\mathrm {e}}^{16\,x^2}\,{\mathrm {e}}^{{\ln \relax (x)}^2}}{x^5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 36, normalized size = 1.57 \begin {gather*} 4 x + \frac {\left (- 4 x - 32\right ) e^{16 x^{2} - 16 x + \left (8 x - 4\right ) \log {\relax (x )} + \log {\relax (x )}^{2} + 4}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________