Optimal. Leaf size=23 \[ e^{2 \left (-8+x^2\right )^2 \left (\frac {3 x}{2}+\log (x)\right )}-x \]
________________________________________________________________________________________
Rubi [B] time = 0.50, antiderivative size = 76, normalized size of antiderivative = 3.30, number of steps used = 3, number of rules used = 2, integrand size = 79, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.025, Rules used = {14, 2288} \begin {gather*} -\frac {e^{3 x \left (8-x^2\right )^2} \left (8-x^2\right ) \left (8 x-5 x^3\right ) x^{2 x^4-32 x^2+127}}{4 x^2 \left (8-x^2\right )-\left (8-x^2\right )^2}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-1+e^{3 x \left (-8+x^2\right )^2} x^{127-32 x^2+2 x^4} \left (-8+x^2\right ) \left (-16-24 x+2 x^2+15 x^3+8 x^2 \log (x)\right )\right ) \, dx\\ &=-x+\int e^{3 x \left (-8+x^2\right )^2} x^{127-32 x^2+2 x^4} \left (-8+x^2\right ) \left (-16-24 x+2 x^2+15 x^3+8 x^2 \log (x)\right ) \, dx\\ &=-x-\frac {e^{3 x \left (8-x^2\right )^2} x^{127-32 x^2+2 x^4} \left (8-x^2\right ) \left (8 x-5 x^3\right )}{4 x^2 \left (8-x^2\right )-\left (-8+x^2\right )^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.32, size = 28, normalized size = 1.22 \begin {gather*} -x+e^{3 x \left (-8+x^2\right )^2} x^{2 \left (-8+x^2\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.91, size = 33, normalized size = 1.43 \begin {gather*} -x + e^{\left (3 \, x^{5} - 48 \, x^{3} + 2 \, {\left (x^{4} - 16 \, x^{2} + 64\right )} \log \relax (x) + 192 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.81, size = 37, normalized size = 1.61 \begin {gather*} -x + e^{\left (3 \, x^{5} + 2 \, x^{4} \log \relax (x) - 48 \, x^{3} - 32 \, x^{2} \log \relax (x) + 192 \, x + 128 \, \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 28, normalized size = 1.22
method | result | size |
risch | \(x^{2 \left (x^{2}-8\right )^{2}} {\mathrm e}^{3 x \left (x^{2}-8\right )^{2}}-x\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.70, size = 37, normalized size = 1.61 \begin {gather*} x^{128} e^{\left (3 \, x^{5} + 2 \, x^{4} \log \relax (x) - 48 \, x^{3} - 32 \, x^{2} \log \relax (x) + 192 \, x\right )} - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.50, size = 40, normalized size = 1.74 \begin {gather*} \frac {x^{2\,x^4}\,x^{128}\,{\mathrm {e}}^{192\,x}\,{\mathrm {e}}^{3\,x^5}\,{\mathrm {e}}^{-48\,x^3}}{x^{32\,x^2}}-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.41, size = 31, normalized size = 1.35 \begin {gather*} - x + e^{3 x^{5} - 48 x^{3} + 192 x + 2 \left (x^{4} - 16 x^{2} + 64\right ) \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________