Optimal. Leaf size=22 \[ 3+\frac {4 e^{-2 x} x^2}{25 \log ^2\left (-\frac {2 x}{5}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.22, antiderivative size = 20, normalized size of antiderivative = 0.91, number of steps used = 4, number of rules used = 3, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.081, Rules used = {12, 6741, 2288} \begin {gather*} \frac {4 e^{-2 x} x^2}{25 \log ^2\left (-\frac {2 x}{5}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{25} \int \frac {e^{-2 x} \left (-8 x+\left (8 x-8 x^2\right ) \log \left (-\frac {2 x}{5}\right )\right )}{\log ^3\left (-\frac {2 x}{5}\right )} \, dx\\ &=\frac {1}{25} \int \frac {8 e^{-2 x} x \left (-1+\log \left (-\frac {2 x}{5}\right )-x \log \left (-\frac {2 x}{5}\right )\right )}{\log ^3\left (-\frac {2 x}{5}\right )} \, dx\\ &=\frac {8}{25} \int \frac {e^{-2 x} x \left (-1+\log \left (-\frac {2 x}{5}\right )-x \log \left (-\frac {2 x}{5}\right )\right )}{\log ^3\left (-\frac {2 x}{5}\right )} \, dx\\ &=\frac {4 e^{-2 x} x^2}{25 \log ^2\left (-\frac {2 x}{5}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 20, normalized size = 0.91 \begin {gather*} \frac {4 e^{-2 x} x^2}{25 \log ^2\left (-\frac {2 x}{5}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 15, normalized size = 0.68 \begin {gather*} \frac {4 \, x^{2} e^{\left (-2 \, x\right )}}{25 \, \log \left (-\frac {2}{5} \, x\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 15, normalized size = 0.68 \begin {gather*} \frac {4 \, x^{2} e^{\left (-2 \, x\right )}}{25 \, \log \left (-\frac {2}{5} \, x\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 16, normalized size = 0.73
method | result | size |
risch | \(\frac {4 \,{\mathrm e}^{-2 x} x^{2}}{25 \ln \left (-\frac {2 x}{5}\right )^{2}}\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.47, size = 58, normalized size = 2.64 \begin {gather*} -\frac {4 \, x^{2}}{25 \, {\left (2 \, {\left (\log \relax (5) - \log \relax (2)\right )} e^{\left (2 \, x\right )} \log \left (-x\right ) - e^{\left (2 \, x\right )} \log \left (-x\right )^{2} - {\left (\log \relax (5)^{2} - 2 \, \log \relax (5) \log \relax (2) + \log \relax (2)^{2}\right )} e^{\left (2 \, x\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.33, size = 15, normalized size = 0.68 \begin {gather*} \frac {4\,x^2\,{\mathrm {e}}^{-2\,x}}{25\,{\ln \left (-\frac {2\,x}{5}\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 20, normalized size = 0.91 \begin {gather*} \frac {4 x^{2} e^{- 2 x}}{25 \log {\left (- \frac {2 x}{5} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________