Optimal. Leaf size=24 \[ e^{-2-\frac {1}{3} e^{4-\frac {x}{\log \left (x^3\right )}}-x} \]
________________________________________________________________________________________
Rubi [F] time = 1.19, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (-2-e^{\frac {-x+(4-\log (3)) \log \left (x^3\right )}{\log \left (x^3\right )}}-x\right ) \left (e^{\frac {-x+(4-\log (3)) \log \left (x^3\right )}{\log \left (x^3\right )}} \left (-3+\log \left (x^3\right )\right )-\log ^2\left (x^3\right )\right )}{\log ^2\left (x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\exp \left (-2-e^{\frac {-x+(4-\log (3)) \log \left (x^3\right )}{\log \left (x^3\right )}}-x\right )+\frac {\exp \left (2-e^{\frac {-x+(4-\log (3)) \log \left (x^3\right )}{\log \left (x^3\right )}}-x-\frac {x}{\log \left (x^3\right )}\right ) \left (-3+\log \left (x^3\right )\right )}{3 \log ^2\left (x^3\right )}\right ) \, dx\\ &=\frac {1}{3} \int \frac {\exp \left (2-e^{\frac {-x+(4-\log (3)) \log \left (x^3\right )}{\log \left (x^3\right )}}-x-\frac {x}{\log \left (x^3\right )}\right ) \left (-3+\log \left (x^3\right )\right )}{\log ^2\left (x^3\right )} \, dx-\int \exp \left (-2-e^{\frac {-x+(4-\log (3)) \log \left (x^3\right )}{\log \left (x^3\right )}}-x\right ) \, dx\\ &=\frac {1}{3} \int \left (-\frac {3 \exp \left (2-e^{\frac {-x+(4-\log (3)) \log \left (x^3\right )}{\log \left (x^3\right )}}-x-\frac {x}{\log \left (x^3\right )}\right )}{\log ^2\left (x^3\right )}+\frac {\exp \left (2-e^{\frac {-x+(4-\log (3)) \log \left (x^3\right )}{\log \left (x^3\right )}}-x-\frac {x}{\log \left (x^3\right )}\right )}{\log \left (x^3\right )}\right ) \, dx-\int e^{-2-\frac {1}{3} e^{4-\frac {x}{\log \left (x^3\right )}}-x} \, dx\\ &=\frac {1}{3} \int \frac {\exp \left (2-e^{\frac {-x+(4-\log (3)) \log \left (x^3\right )}{\log \left (x^3\right )}}-x-\frac {x}{\log \left (x^3\right )}\right )}{\log \left (x^3\right )} \, dx-\int e^{-2-\frac {1}{3} e^{4-\frac {x}{\log \left (x^3\right )}}-x} \, dx-\int \frac {\exp \left (2-e^{\frac {-x+(4-\log (3)) \log \left (x^3\right )}{\log \left (x^3\right )}}-x-\frac {x}{\log \left (x^3\right )}\right )}{\log ^2\left (x^3\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.78, size = 24, normalized size = 1.00 \begin {gather*} e^{-2-\frac {1}{3} e^{4-\frac {x}{\log \left (x^3\right )}}-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.90, size = 28, normalized size = 1.17 \begin {gather*} e^{\left (-x - e^{\left (-\frac {{\left (\log \relax (3) - 4\right )} \log \left (x^{3}\right ) + x}{\log \left (x^{3}\right )}\right )} - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 24, normalized size = 1.00 \begin {gather*} e^{\left (-x - e^{\left (-\frac {x}{\log \left (x^{3}\right )} - \log \relax (3) + 4\right )} - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.78, size = 27, normalized size = 1.12
method | result | size |
risch | \({\mathrm e}^{-\frac {{\mathrm e}^{\frac {4 \ln \left (x^{3}\right )-x}{\ln \left (x^{3}\right )}}}{3}-x -2}\) | \(27\) |
norman | \({\mathrm e}^{-{\mathrm e}^{\frac {\left (-\ln \relax (3)+4\right ) \ln \left (x^{3}\right )-x}{\ln \left (x^{3}\right )}}-x -2}\) | \(32\) |
default | \(\frac {\left (\ln \left (x^{3}\right )-3 \ln \relax (x )\right ) {\mathrm e}^{-{\mathrm e}^{\frac {\left (-\ln \relax (3)+4\right ) \ln \left (x^{3}\right )-x}{\ln \left (x^{3}\right )}}-x -2}+3 \ln \relax (x ) {\mathrm e}^{-{\mathrm e}^{\frac {\left (-\ln \relax (3)+4\right ) \ln \left (x^{3}\right )-x}{\ln \left (x^{3}\right )}}-x -2}}{\ln \left (x^{3}\right )}\) | \(85\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.56, size = 18, normalized size = 0.75 \begin {gather*} e^{\left (-x - \frac {1}{3} \, e^{\left (-\frac {x}{3 \, \log \relax (x)} + 4\right )} - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.42, size = 22, normalized size = 0.92 \begin {gather*} {\mathrm {e}}^{-\frac {{\mathrm {e}}^4\,{\mathrm {e}}^{-\frac {x}{\ln \left (x^3\right )}}}{3}}\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^{-2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.69, size = 24, normalized size = 1.00 \begin {gather*} e^{- x - e^{\frac {- x + \left (4 - \log {\relax (3 )}\right ) \log {\left (x^{3} \right )}}{\log {\left (x^{3} \right )}}} - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________