Optimal. Leaf size=21 \[ \frac {125 \log ^2\left (x \left (x+\frac {x}{e^5}\right )^2\right )}{13 x} \]
________________________________________________________________________________________
Rubi [A] time = 0.08, antiderivative size = 28, normalized size of antiderivative = 1.33, number of steps used = 6, number of rules used = 4, integrand size = 62, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {12, 14, 2305, 2304} \begin {gather*} \frac {125 \left (2 \left (5-\log \left (1+e^5\right )\right )-\log \left (x^3\right )\right )^2}{13 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2304
Rule 2305
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{13} \int \frac {750 \log \left (\frac {x^3+2 e^5 x^3+e^{10} x^3}{e^{10}}\right )-125 \log ^2\left (\frac {x^3+2 e^5 x^3+e^{10} x^3}{e^{10}}\right )}{x^2} \, dx\\ &=\frac {1}{13} \int \left (-\frac {125 \left (10 \left (1-\frac {1}{5} \log \left (1+e^5\right )\right )-\log \left (x^3\right )\right )^2}{x^2}+\frac {750 \left (-10 \left (1-\frac {1}{5} \log \left (1+e^5\right )\right )+\log \left (x^3\right )\right )}{x^2}\right ) \, dx\\ &=-\left (\frac {125}{13} \int \frac {\left (10 \left (1-\frac {1}{5} \log \left (1+e^5\right )\right )-\log \left (x^3\right )\right )^2}{x^2} \, dx\right )+\frac {750}{13} \int \frac {-10 \left (1-\frac {1}{5} \log \left (1+e^5\right )\right )+\log \left (x^3\right )}{x^2} \, dx\\ &=-\frac {2250}{13 x}+\frac {750 \left (2 \left (5-\log \left (1+e^5\right )\right )-\log \left (x^3\right )\right )}{13 x}+\frac {125 \left (2 \left (5-\log \left (1+e^5\right )\right )-\log \left (x^3\right )\right )^2}{13 x}+\frac {750}{13} \int \frac {10 \left (1-\frac {1}{5} \log \left (1+e^5\right )\right )-\log \left (x^3\right )}{x^2} \, dx\\ &=\frac {125 \left (2 \left (5-\log \left (1+e^5\right )\right )-\log \left (x^3\right )\right )^2}{13 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.05, size = 69, normalized size = 3.29 \begin {gather*} -\frac {125}{13} \left (-\frac {100}{x}+\frac {40 \log \left (1+e^5\right )}{x}-\frac {4 \log ^2\left (1+e^5\right )}{x}+\frac {20 \log \left (x^3\right )}{x}-\frac {4 \log \left (1+e^5\right ) \log \left (x^3\right )}{x}-\frac {\log ^2\left (x^3\right )}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.87, size = 28, normalized size = 1.33 \begin {gather*} \frac {125 \, \log \left ({\left (x^{3} e^{10} + 2 \, x^{3} e^{5} + x^{3}\right )} e^{\left (-10\right )}\right )^{2}}{13 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.14, size = 53, normalized size = 2.52 \begin {gather*} \frac {125 \, {\left (\log \left (x^{3} e^{15} + 2 \, x^{3} e^{10} + x^{3} e^{5}\right )^{2} - 30 \, \log \left (x^{3} e^{15} + 2 \, x^{3} e^{10} + x^{3} e^{5}\right ) + 225\right )}}{13 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 29, normalized size = 1.38
method | result | size |
risch | \(\frac {125 \ln \left (\left (x^{3} {\mathrm e}^{10}+2 x^{3} {\mathrm e}^{5}+x^{3}\right ) {\mathrm e}^{-10}\right )^{2}}{13 x}\) | \(29\) |
norman | \(\frac {125 \ln \left (\left (x^{3} {\mathrm e}^{10}+2 x^{3} {\mathrm e}^{5}+x^{3}\right ) {\mathrm e}^{-10}\right )^{2}}{13 x}\) | \(33\) |
default | \(\frac {250 \ln \left ({\mathrm e}^{10}+2 \,{\mathrm e}^{5}+1\right ) \ln \left (x^{3}\right )}{13 x}-\frac {2500 \ln \left ({\mathrm e}^{10}+2 \,{\mathrm e}^{5}+1\right )}{13 x}-\frac {250 \ln \left (x^{3}\right )}{x}+\frac {10250}{13 x}+\frac {\frac {2250}{13}+\frac {125 \ln \left (x^{3}\right )^{2}}{13}+\frac {750 \ln \left (x^{3}\right )}{13}}{x}+\frac {125 \ln \left ({\mathrm e}^{10}+2 \,{\mathrm e}^{5}+1\right )^{2}}{13 x}\) | \(101\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 25, normalized size = 1.19 \begin {gather*} \frac {125 \, \log \left (2 \, x^{3} e^{\left (-5\right )} + x^{3} e^{\left (-10\right )} + x^{3}\right )^{2}}{13 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.80, size = 22, normalized size = 1.05 \begin {gather*} \frac {125\,{\ln \left (x^3\,{\mathrm {e}}^{-10}\,\left (2\,{\mathrm {e}}^5+{\mathrm {e}}^{10}+1\right )\right )}^2}{13\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 29, normalized size = 1.38 \begin {gather*} \frac {125 \log {\left (\frac {x^{3} + 2 x^{3} e^{5} + x^{3} e^{10}}{e^{10}} \right )}^{2}}{13 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________