Optimal. Leaf size=31 \[ \frac {e^{2 x} \left (5+e^{3-e^x-\frac {2 x \log \left (x^2\right )}{\log (4)}}\right )}{x} \]
________________________________________________________________________________________
Rubi [F] time = 1.28, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{2 x} (-5+10 x) \log (4)+e^{\frac {3 \log (4)-e^x \log (4)-2 x \log \left (x^2\right )}{\log (4)}} \left (-e^{3 x} x \log (4)+e^{2 x} (-4 x+(-1+2 x) \log (4))-2 e^{2 x} x \log \left (x^2\right )\right )}{x^2 \log (4)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {e^{2 x} (-5+10 x) \log (4)+e^{\frac {3 \log (4)-e^x \log (4)-2 x \log \left (x^2\right )}{\log (4)}} \left (-e^{3 x} x \log (4)+e^{2 x} (-4 x+(-1+2 x) \log (4))-2 e^{2 x} x \log \left (x^2\right )\right )}{x^2} \, dx}{\log (4)}\\ &=\frac {\int \left (\frac {5 e^{2 x} (-1+2 x) \log (4)}{x^2}+e^{3-e^x+2 x} \left (x^2\right )^{-1-\frac {2 x}{\log (4)}} \left (-4 x (1-\log (2))-\log (4)-e^x x \log (4)-2 x \log \left (x^2\right )\right )\right ) \, dx}{\log (4)}\\ &=5 \int \frac {e^{2 x} (-1+2 x)}{x^2} \, dx+\frac {\int e^{3-e^x+2 x} \left (x^2\right )^{-1-\frac {2 x}{\log (4)}} \left (-4 x (1-\log (2))-\log (4)-e^x x \log (4)-2 x \log \left (x^2\right )\right ) \, dx}{\log (4)}\\ &=\frac {5 e^{2 x}}{x}+\frac {\int \left (4 e^{3-e^x+2 x} x \left (x^2\right )^{-1-\frac {2 x}{\log (4)}} (-1+\log (2))-e^{3-e^x+2 x} \left (x^2\right )^{-1-\frac {2 x}{\log (4)}} \log (4)-e^{3-e^x+3 x} x \left (x^2\right )^{-1-\frac {2 x}{\log (4)}} \log (4)-2 e^{3-e^x+2 x} x \left (x^2\right )^{-1-\frac {2 x}{\log (4)}} \log \left (x^2\right )\right ) \, dx}{\log (4)}\\ &=\frac {5 e^{2 x}}{x}-\frac {2 \int e^{3-e^x+2 x} x \left (x^2\right )^{-1-\frac {2 x}{\log (4)}} \log \left (x^2\right ) \, dx}{\log (4)}-\frac {(4 (1-\log (2))) \int e^{3-e^x+2 x} x \left (x^2\right )^{-1-\frac {2 x}{\log (4)}} \, dx}{\log (4)}-\int e^{3-e^x+2 x} \left (x^2\right )^{-1-\frac {2 x}{\log (4)}} \, dx-\int e^{3-e^x+3 x} x \left (x^2\right )^{-1-\frac {2 x}{\log (4)}} \, dx\\ &=\frac {5 e^{2 x}}{x}+\frac {2 \int \frac {2 \int \frac {e^{3-e^x+2 x} \left (x^2\right )^{-\frac {2 x}{\log (4)}}}{x} \, dx}{x} \, dx}{\log (4)}-\frac {(4 (1-\log (2))) \int e^{3-e^x+2 x} x \left (x^2\right )^{-1-\frac {2 x}{\log (4)}} \, dx}{\log (4)}-\frac {\left (2 \log \left (x^2\right )\right ) \int e^{3-e^x+2 x} x \left (x^2\right )^{-1-\frac {2 x}{\log (4)}} \, dx}{\log (4)}-\int e^{3-e^x+2 x} \left (x^2\right )^{-1-\frac {2 x}{\log (4)}} \, dx-\int e^{3-e^x+3 x} x \left (x^2\right )^{-1-\frac {2 x}{\log (4)}} \, dx\\ &=\frac {5 e^{2 x}}{x}+\frac {4 \int \frac {\int \frac {e^{3-e^x+2 x} \left (x^2\right )^{-\frac {2 x}{\log (4)}}}{x} \, dx}{x} \, dx}{\log (4)}-\frac {(4 (1-\log (2))) \int e^{3-e^x+2 x} x \left (x^2\right )^{-1-\frac {2 x}{\log (4)}} \, dx}{\log (4)}-\frac {\left (2 \log \left (x^2\right )\right ) \int e^{3-e^x+2 x} x \left (x^2\right )^{-1-\frac {2 x}{\log (4)}} \, dx}{\log (4)}-\int e^{3-e^x+2 x} \left (x^2\right )^{-1-\frac {2 x}{\log (4)}} \, dx-\int e^{3-e^x+3 x} x \left (x^2\right )^{-1-\frac {2 x}{\log (4)}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.02, size = 32, normalized size = 1.03 \begin {gather*} \frac {e^{2 x} \left (5+e^{3-e^x} \left (x^2\right )^{-\frac {2 x}{\log (4)}}\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 38, normalized size = 1.23 \begin {gather*} \frac {5 \, e^{\left (2 \, x\right )} + e^{\left (2 \, x - \frac {e^{x} \log \relax (2) + x \log \left (x^{2}\right ) - 3 \, \log \relax (2)}{\log \relax (2)}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.29, size = 47, normalized size = 1.52 \begin {gather*} \frac {5 \, e^{\left (2 \, x\right )} \log \relax (2) + e^{\left (\frac {2 \, x \log \relax (2) - e^{x} \log \relax (2) - x \log \left (x^{2}\right )}{\log \relax (2)} + 3\right )} \log \relax (2)}{x \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.54, size = 95, normalized size = 3.06
method | result | size |
risch | \(\frac {5 \,{\mathrm e}^{2 x}}{x}+\frac {{\mathrm e}^{-\frac {-i x \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i x \pi \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i x \right )-i x \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x \right )^{2}+4 x \ln \relax (x )+2 \,{\mathrm e}^{x} \ln \relax (2)-4 x \ln \relax (2)-6 \ln \relax (2)}{2 \ln \relax (2)}}}{x}\) | \(95\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.71, size = 48, normalized size = 1.55 \begin {gather*} \frac {10 \, {\rm Ei}\left (2 \, x\right ) \log \relax (2) - 10 \, \Gamma \left (-1, -2 \, x\right ) \log \relax (2) + \frac {e^{\left (2 \, x - \frac {2 \, x \log \relax (x)}{\log \relax (2)} - e^{x} + 3\right )} \log \relax (2)}{x}}{\log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {\frac {{\mathrm {e}}^{-\frac {x\,\ln \left (x^2\right )-3\,\ln \relax (2)+{\mathrm {e}}^x\,\ln \relax (2)}{\ln \relax (2)}}\,\left ({\mathrm {e}}^{2\,x}\,\left (4\,x-2\,\ln \relax (2)\,\left (2\,x-1\right )\right )+2\,x\,\ln \left (x^2\right )\,{\mathrm {e}}^{2\,x}+2\,x\,{\mathrm {e}}^{3\,x}\,\ln \relax (2)\right )}{2}-{\mathrm {e}}^{2\,x}\,\ln \relax (2)\,\left (10\,x-5\right )}{x^2\,\ln \relax (2)} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.42, size = 37, normalized size = 1.19 \begin {gather*} \frac {e^{2 x} e^{\frac {- x \log {\left (x^{2} \right )} - e^{x} \log {\relax (2 )} + 3 \log {\relax (2 )}}{\log {\relax (2 )}}}}{x} + \frac {5 e^{2 x}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________