Optimal. Leaf size=21 \[ \frac {3}{2} e^{-3+e^{\frac {x}{-5+x-\log (2)}}} \]
________________________________________________________________________________________
Rubi [F] time = 0.53, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-3+e^{-\frac {x}{5-x+\log (2)}}-\frac {x}{5-x+\log (2)}} (-15-3 \log (2))}{50-20 x+2 x^2+(20-4 x) \log (2)+2 \log ^2(2)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\left ((15+3 \log (2)) \int \frac {e^{-3+e^{-\frac {x}{5-x+\log (2)}}-\frac {x}{5-x+\log (2)}}}{50-20 x+2 x^2+(20-4 x) \log (2)+2 \log ^2(2)} \, dx\right )\\ &=-\left ((15+3 \log (2)) \int \frac {e^{-3+e^{\frac {x}{-5+x-\log (2)}}+\frac {x}{-5+x-\log (2)}}}{2 (5-x+\log (2))^2} \, dx\right )\\ &=-\left (\frac {1}{2} (3 (5+\log (2))) \int \frac {e^{-3+e^{\frac {x}{-5+x-\log (2)}}+\frac {x}{-5+x-\log (2)}}}{(5-x+\log (2))^2} \, dx\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.27, size = 21, normalized size = 1.00 \begin {gather*} \frac {3}{2} e^{-3+e^{\frac {x}{-5+x-\log (2)}}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.54, size = 55, normalized size = 2.62 \begin {gather*} \frac {3}{2} \, e^{\left (\frac {{\left (x - \log \relax (2) - 5\right )} e^{\left (\frac {x}{x - \log \relax (2) - 5}\right )} - 2 \, x + 3 \, \log \relax (2) + 15}{x - \log \relax (2) - 5} - \frac {x}{x - \log \relax (2) - 5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.25, size = 99, normalized size = 4.71 \begin {gather*} \frac {3 \, {\left (\log \relax (2) + 5\right )} e^{\left (\frac {x e^{\left (\frac {x}{x - \log \relax (2) - 5}\right )} - e^{\left (\frac {x}{x - \log \relax (2) - 5}\right )} \log \relax (2) + x - 5 \, e^{\left (\frac {x}{x - \log \relax (2) - 5}\right )}}{x - \log \relax (2) - 5}\right )}}{2 \, {\left (e^{\left (\frac {x}{x - \log \relax (2) - 5} + 3\right )} \log \relax (2) + 5 \, e^{\left (\frac {x}{x - \log \relax (2) - 5} + 3\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.15, size = 52, normalized size = 2.48
method | result | size |
risch | \(\frac {3 \,{\mathrm e}^{{\mathrm e}^{-\frac {x}{\ln \relax (2)+5-x}}-3} \ln \relax (2)}{2 \left (\ln \relax (2)+5\right )}+\frac {15 \,{\mathrm e}^{{\mathrm e}^{-\frac {x}{\ln \relax (2)+5-x}}-3}}{2 \left (\ln \relax (2)+5\right )}\) | \(52\) |
norman | \(\frac {\left (\frac {3 \ln \relax (2)}{2}+\frac {15}{2}\right ) {\mathrm e}^{{\mathrm e}^{-\frac {x}{\ln \relax (2)+5-x}}-3}-\frac {3 x \,{\mathrm e}^{{\mathrm e}^{-\frac {x}{\ln \relax (2)+5-x}}-3}}{2}}{\ln \relax (2)+5-x}\) | \(54\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 31, normalized size = 1.48 \begin {gather*} \frac {3}{2} \, e^{\left (e^{\left (\frac {\log \relax (2)}{x - \log \relax (2) - 5} + \frac {5}{x - \log \relax (2) - 5} + 1\right )} - 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.50, size = 18, normalized size = 0.86 \begin {gather*} \frac {3\,{\mathrm {e}}^{-3}\,{\mathrm {e}}^{{\mathrm {e}}^{-\frac {x}{\ln \relax (2)-x+5}}}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.65, size = 17, normalized size = 0.81 \begin {gather*} \frac {3 e^{-3 + e^{- \frac {x}{- x + \log {\relax (2 )} + 5}}}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________