Optimal. Leaf size=21 \[ \left (4+e^{5 e^2}\right ) \left (-5+e^x+e^{5+x}\right ) x \]
________________________________________________________________________________________
Rubi [B] time = 0.06, antiderivative size = 96, normalized size of antiderivative = 4.57, number of steps used = 10, number of rules used = 2, integrand size = 48, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.042, Rules used = {2176, 2194} \begin {gather*} -5 e^{5 e^2} x-20 x-4 e^x-4 e^{x+5}-e^{x+5 e^2}-e^{x+5 \left (1+e^2\right )}+4 e^x (x+1)+4 e^{x+5} (x+1)+e^{x+5 e^2} (x+1)+e^{x+5 \left (1+e^2\right )} (x+1) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2176
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-20 x+e^{5 e^2} \int \left (-5+e^x (1+x)+e^{5+x} (1+x)\right ) \, dx+\int e^x (4+4 x) \, dx+\int e^{5+x} (4+4 x) \, dx\\ &=-20 x-5 e^{5 e^2} x+4 e^x (1+x)+4 e^{5+x} (1+x)-4 \int e^x \, dx-4 \int e^{5+x} \, dx+e^{5 e^2} \int e^x (1+x) \, dx+e^{5 e^2} \int e^{5+x} (1+x) \, dx\\ &=-4 e^x-4 e^{5+x}-20 x-5 e^{5 e^2} x+4 e^x (1+x)+4 e^{5+x} (1+x)+e^{5 e^2+x} (1+x)+e^{5 \left (1+e^2\right )+x} (1+x)-e^{5 e^2} \int e^x \, dx-e^{5 e^2} \int e^{5+x} \, dx\\ &=-4 e^x-4 e^{5+x}-e^{5 e^2+x}-e^{5 \left (1+e^2\right )+x}-20 x-5 e^{5 e^2} x+4 e^x (1+x)+4 e^{5+x} (1+x)+e^{5 e^2+x} (1+x)+e^{5 \left (1+e^2\right )+x} (1+x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 26, normalized size = 1.24 \begin {gather*} \left (4+e^{5 e^2}\right ) \left (-5 x+e^x x+e^{5+x} x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.87, size = 46, normalized size = 2.19 \begin {gather*} -{\left (20 \, x e^{5} - 4 \, {\left (x e^{5} + x\right )} e^{\left (x + 5\right )} + {\left (5 \, x e^{5} - {\left (x e^{5} + x\right )} e^{\left (x + 5\right )}\right )} e^{\left (5 \, e^{2}\right )}\right )} e^{\left (-5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.15, size = 37, normalized size = 1.76 \begin {gather*} 4 \, x e^{\left (x + 5\right )} + 4 \, x e^{x} + {\left (x e^{\left (x + 5\right )} + x e^{x} - 5 \, x\right )} e^{\left (e^{\left (\log \relax (5) + 2\right )}\right )} - 20 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 36, normalized size = 1.71
method | result | size |
norman | \(\left (-5 \,{\mathrm e}^{5 \,{\mathrm e}^{2}}-20\right ) x +\left ({\mathrm e}^{5} {\mathrm e}^{5 \,{\mathrm e}^{2}}+4 \,{\mathrm e}^{5}+{\mathrm e}^{5 \,{\mathrm e}^{2}}+4\right ) x \,{\mathrm e}^{x}\) | \(36\) |
risch | \(-5 \,{\mathrm e}^{5 \,{\mathrm e}^{2}} x +\left ({\mathrm e}^{5}+1\right ) x \,{\mathrm e}^{5 \,{\mathrm e}^{2}+x}+4 x \,{\mathrm e}^{5+x}+4 \,{\mathrm e}^{x} x -20 x\) | \(38\) |
default | \(-20 x +4 \,{\mathrm e}^{x} x +4 \,{\mathrm e}^{5+x} \left (5+x \right )-20 \,{\mathrm e}^{5+x}+{\mathrm e}^{x} {\mathrm e}^{{\mathrm e}^{2+\ln \relax (5)}} x +{\mathrm e}^{5+x} {\mathrm e}^{{\mathrm e}^{2+\ln \relax (5)}} x -5 \,{\mathrm e}^{{\mathrm e}^{2+\ln \relax (5)}} x\) | \(56\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.37, size = 42, normalized size = 2.00 \begin {gather*} 4 \, x e^{\left (x + 5\right )} + 4 \, {\left (x - 1\right )} e^{x} + {\left (x e^{\left (x + 5\right )} + x e^{x} - 5 \, x\right )} e^{\left (5 \, e^{2}\right )} - 20 \, x + 4 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.53, size = 35, normalized size = 1.67 \begin {gather*} x\,{\mathrm {e}}^x\,\left ({\mathrm {e}}^{5\,{\mathrm {e}}^2}+4\,{\mathrm {e}}^5+{\mathrm {e}}^{5\,{\mathrm {e}}^2+5}+4\right )-x\,\left (5\,{\mathrm {e}}^{5\,{\mathrm {e}}^2}+20\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.15, size = 46, normalized size = 2.19 \begin {gather*} x \left (- 5 e^{5 e^{2}} - 20\right ) + \left (4 x + 4 x e^{5} + x e^{5 e^{2}} + x e^{5} e^{5 e^{2}}\right ) e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________