3.41.3 e4+ex25+xx(500200x20x2+e4(50x20x22x3)+ex25+x(200x+20x2+e4(20x+22x2+2x3)))25+10x+x2dx

Optimal. Leaf size=27 2eex25+xx(1+10e4+x)

________________________________________________________________________________________

Rubi [F]  time = 3.64, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} e4+ex25+xx(500200x20x2+e4(50x20x22x3)+ex25+x(200x+20x2+e4(20x+22x2+2x3)))25+10x+x2dx

Verification is not applicable to the result.

[In]

Int[(E^(-4 + E^(x^2/(5 + x)) - x)*(-500 - 200*x - 20*x^2 + E^4*(-50*x - 20*x^2 - 2*x^3) + E^(x^2/(5 + x))*(200
*x + 20*x^2 + E^4*(20*x + 22*x^2 + 2*x^3))))/(25 + 10*x + x^2),x]

[Out]

-20*Defer[Int][E^(-4 + E^(x^2/(5 + x)) - x), x] + 2*(10 + E^4)*Defer[Int][E^(-4 + E^(x^2/(5 + x)) - x + x^2/(5
 + x)), x] - 2*Defer[Int][E^(E^(x^2/(5 + x)) - x)*x, x] + 2*Defer[Int][E^(E^(x^2/(5 + x)) - x + x^2/(5 + x))*x
, x] - 100*(5 - 2*E^4)*Defer[Int][E^(-4 + E^(x^2/(5 + x)) - x + x^2/(5 + x))/(5 + x)^2, x] - 50*Defer[Int][E^(
E^(x^2/(5 + x)) - x + x^2/(5 + x))/(5 + x), x]

Rubi steps

integral=e4+ex25+xx(500200x20x2+e4(50x20x22x3)+ex25+x(200x+20x2+e4(20x+22x2+2x3)))(5+x)2dx=(2e4+ex25+xx(10+e4x)+2e4+ex25+xx+x25+xx(10+x)(10+e4+e4x)(5+x)2)dx=(2e4+ex25+xx(10+e4x)dx)+2e4+ex25+xx+x25+xx(10+x)(10+e4+e4x)(5+x)2dx=(2(10e4+ex25+xx+eex25+xxx)dx)+2(10e4+ex25+xx+x25+x(1+e410)+eex25+xx+x25+xx+50e4+ex25+xx+x25+x(5+2e4)(5+x)225eex25+xx+x25+x5+x)dx=(2eex25+xxxdx)+2eex25+xx+x25+xxdx20e4+ex25+xxdx50eex25+xx+x25+x5+xdx(100(52e4))e4+ex25+xx+x25+x(5+x)2dx+(2(10+e4))e4+ex25+xx+x25+xdx

________________________________________________________________________________________

Mathematica [A]  time = 1.53, size = 29, normalized size = 1.07 e4+ex25+xx(20+2e4(1+x))

Antiderivative was successfully verified.

[In]

Integrate[(E^(-4 + E^(x^2/(5 + x)) - x)*(-500 - 200*x - 20*x^2 + E^4*(-50*x - 20*x^2 - 2*x^3) + E^(x^2/(5 + x)
)*(200*x + 20*x^2 + E^4*(20*x + 22*x^2 + 2*x^3))))/(25 + 10*x + x^2),x]

[Out]

E^(-4 + E^(x^2/(5 + x)) - x)*(20 + 2*E^4*(1 + x))

________________________________________________________________________________________

fricas [A]  time = 0.70, size = 26, normalized size = 0.96 2((x+1)e4+10)e(x+e(x2x+5)4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2*x^3+22*x^2+20*x)*exp(4)+20*x^2+200*x)*exp(x^2/(5+x))+(-2*x^3-20*x^2-50*x)*exp(4)-20*x^2-200*x-5
00)/(x^2+10*x+25)/exp(4)/exp(-exp(x^2/(5+x))+x),x, algorithm="fricas")

[Out]

2*((x + 1)*e^4 + 10)*e^(-x + e^(x^2/(x + 5)) - 4)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 2(10x2+(x3+10x2+25x)e4(10x2+(x3+11x2+10x)e4+100x)e(x2x+5)+100x+250)e(x+e(x2x+5)4)x2+10x+25dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2*x^3+22*x^2+20*x)*exp(4)+20*x^2+200*x)*exp(x^2/(5+x))+(-2*x^3-20*x^2-50*x)*exp(4)-20*x^2-200*x-5
00)/(x^2+10*x+25)/exp(4)/exp(-exp(x^2/(5+x))+x),x, algorithm="giac")

[Out]

integrate(-2*(10*x^2 + (x^3 + 10*x^2 + 25*x)*e^4 - (10*x^2 + (x^3 + 11*x^2 + 10*x)*e^4 + 100*x)*e^(x^2/(x + 5)
) + 100*x + 250)*e^(-x + e^(x^2/(x + 5)) - 4)/(x^2 + 10*x + 25), x)

________________________________________________________________________________________

maple [A]  time = 0.13, size = 29, normalized size = 1.07




method result size



risch (2xe4+2e4+20)e4+ex25+xx 29
norman (2x2+10(10+e4)e4+4(5+3e4)e4x)eex25+xx5+x 53



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((2*x^3+22*x^2+20*x)*exp(4)+20*x^2+200*x)*exp(x^2/(5+x))+(-2*x^3-20*x^2-50*x)*exp(4)-20*x^2-200*x-500)/(x
^2+10*x+25)/exp(4)/exp(-exp(x^2/(5+x))+x),x,method=_RETURNVERBOSE)

[Out]

(2*x*exp(4)+2*exp(4)+20)*exp(-4+exp(x^2/(5+x))-x)

________________________________________________________________________________________

maxima [A]  time = 0.45, size = 27, normalized size = 1.00 2(xe4+e4+10)e(x+e(x+25x+55)4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2*x^3+22*x^2+20*x)*exp(4)+20*x^2+200*x)*exp(x^2/(5+x))+(-2*x^3-20*x^2-50*x)*exp(4)-20*x^2-200*x-5
00)/(x^2+10*x+25)/exp(4)/exp(-exp(x^2/(5+x))+x),x, algorithm="maxima")

[Out]

2*(x*e^4 + e^4 + 10)*e^(-x + e^(x + 25/(x + 5) - 5) - 4)

________________________________________________________________________________________

mupad [B]  time = 2.89, size = 29, normalized size = 1.07 eex2x+5x(2x+e4(2e4+20))

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(-4)*exp(exp(x^2/(x + 5)) - x)*(200*x - exp(x^2/(x + 5))*(200*x + exp(4)*(20*x + 22*x^2 + 2*x^3) + 20
*x^2) + exp(4)*(50*x + 20*x^2 + 2*x^3) + 20*x^2 + 500))/(10*x + x^2 + 25),x)

[Out]

exp(exp(x^2/(x + 5)) - x)*(2*x + exp(-4)*(2*exp(4) + 20))

________________________________________________________________________________________

sympy [A]  time = 17.47, size = 27, normalized size = 1.00 (2xe4+20+2e4)ex+ex2x+5e4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2*x**3+22*x**2+20*x)*exp(4)+20*x**2+200*x)*exp(x**2/(5+x))+(-2*x**3-20*x**2-50*x)*exp(4)-20*x**2-
200*x-500)/(x**2+10*x+25)/exp(4)/exp(-exp(x**2/(5+x))+x),x)

[Out]

(2*x*exp(4) + 20 + 2*exp(4))*exp(-4)*exp(-x + exp(x**2/(x + 5)))

________________________________________________________________________________________