3.41.4 e4+x+x4x3(3x4+(36+42x+6x2+3x33x5)log(2+2x))x3+x4dx

Optimal. Leaf size=23 3ex4+xx3xlog(2+2x)

________________________________________________________________________________________

Rubi [B]  time = 1.75, antiderivative size = 51, normalized size of antiderivative = 2.22, number of steps used = 9, number of rules used = 5, integrand size = 56, number of rulesintegrand size = 0.089, Rules used = {1593, 6741, 6742, 2288, 2554} 3e4x31x2x(x4+2x+12)log(2x+2)(12x42x3+1)x3

Antiderivative was successfully verified.

[In]

Int[(3*x^4 + (36 + 42*x + 6*x^2 + 3*x^3 - 3*x^5)*Log[2 + 2*x])/(E^((4 + x + x^4)/x^3)*(x^3 + x^4)),x]

[Out]

(-3*E^(-4/x^3 - x^(-2) - x)*(12 + 2*x - x^4)*Log[2 + 2*x])/((1 - 12/x^4 - 2/x^3)*x^3)

Rule 1593

Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^(q - p))^n, x] /; F
reeQ[{a, b, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rule 2288

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rule 2554

Int[Log[u_]*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Dist[Log[u], w, x] - Int[SimplifyIntegrand[(w*D[u, x]
)/u, x], x] /; InverseFunctionFreeQ[w, x]] /; InverseFunctionFreeQ[u, x]

Rule 6741

Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=e4+x+x4x3(3x4+(36+42x+6x2+3x33x5)log(2+2x))x3(1+x)dx=e4x31x2x(3x4+(36+42x+6x2+3x33x5)log(2+2x))x3(1+x)dx=(3e4x31x2xx1+x+3e4x31x2x(12+2x+x3x4)log(2+2x)x3)dx=3e4x31x2xx1+xdx+3e4x31x2x(12+2x+x3x4)log(2+2x)x3dx=3e4x31x2x(12+2xx4)log(2+2x)(112x42x3)x3+3(e4x31x2x+e4x31x2x1x)dx3e4x31x2xx1+xdx=3e4x31x2x(12+2xx4)log(2+2x)(112x42x3)x3+3e4x31x2xdx3(e4x31x2x+e4x31x2x1x)dx+3e4x31x2x1xdx=3e4x31x2x(12+2xx4)log(2+2x)(112x42x3)x3

________________________________________________________________________________________

Mathematica [A]  time = 0.27, size = 22, normalized size = 0.96 3e4+x+x4x3xlog(2(1+x))

Antiderivative was successfully verified.

[In]

Integrate[(3*x^4 + (36 + 42*x + 6*x^2 + 3*x^3 - 3*x^5)*Log[2 + 2*x])/(E^((4 + x + x^4)/x^3)*(x^3 + x^4)),x]

[Out]

(3*x*Log[2*(1 + x)])/E^((4 + x + x^4)/x^3)

________________________________________________________________________________________

fricas [A]  time = 0.57, size = 21, normalized size = 0.91 3xe(x4+x+4x3)log(2x+2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-3*x^5+3*x^3+6*x^2+42*x+36)*log(2*x+2)+3*x^4)/(x^4+x^3)/exp((x^4+x+4)/x^3),x, algorithm="fricas")

[Out]

3*x*e^(-(x^4 + x + 4)/x^3)*log(2*x + 2)

________________________________________________________________________________________

giac [A]  time = 0.24, size = 21, normalized size = 0.91 3xe(x4+x+4x3)log(2x+2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-3*x^5+3*x^3+6*x^2+42*x+36)*log(2*x+2)+3*x^4)/(x^4+x^3)/exp((x^4+x+4)/x^3),x, algorithm="giac")

[Out]

3*x*e^(-(x^4 + x + 4)/x^3)*log(2*x + 2)

________________________________________________________________________________________

maple [A]  time = 0.05, size = 22, normalized size = 0.96




method result size



risch 3xex4+x+4x3ln(2x+2) 22



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-3*x^5+3*x^3+6*x^2+42*x+36)*ln(2*x+2)+3*x^4)/(x^4+x^3)/exp((x^4+x+4)/x^3),x,method=_RETURNVERBOSE)

[Out]

3*x*exp(-(x^4+x+4)/x^3)*ln(2*x+2)

________________________________________________________________________________________

maxima [A]  time = 0.53, size = 28, normalized size = 1.22 3(xlog(2)+xlog(x+1))e(x1x24x3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-3*x^5+3*x^3+6*x^2+42*x+36)*log(2*x+2)+3*x^4)/(x^4+x^3)/exp((x^4+x+4)/x^3),x, algorithm="maxima")

[Out]

3*(x*log(2) + x*log(x + 1))*e^(-x - 1/x^2 - 4/x^3)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.04 ex4+x+4x3(3x4+ln(2x+2)(3x5+3x3+6x2+42x+36))x4+x3dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(-(x + x^4 + 4)/x^3)*(3*x^4 + log(2*x + 2)*(42*x + 6*x^2 + 3*x^3 - 3*x^5 + 36)))/(x^3 + x^4),x)

[Out]

int((exp(-(x + x^4 + 4)/x^3)*(3*x^4 + log(2*x + 2)*(42*x + 6*x^2 + 3*x^3 - 3*x^5 + 36)))/(x^3 + x^4), x)

________________________________________________________________________________________

sympy [A]  time = 0.48, size = 20, normalized size = 0.87 3xex4+x+4x3log(2x+2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-3*x**5+3*x**3+6*x**2+42*x+36)*ln(2*x+2)+3*x**4)/(x**4+x**3)/exp((x**4+x+4)/x**3),x)

[Out]

3*x*exp(-(x**4 + x + 4)/x**3)*log(2*x + 2)

________________________________________________________________________________________