3.41.8 e6+3e3(1log(4))+e6+3e3log(x)xlog(4)+xlog(x)dx

Optimal. Leaf size=23 e3(2+e3)(log(x)log(log(4)log(x)))

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 32, normalized size of antiderivative = 1.39, number of steps used = 4, number of rules used = 2, integrand size = 42, number of rulesintegrand size = 0.048, Rules used = {12, 43} e3e36log(x)e3e36log(log(4)log(x))

Antiderivative was successfully verified.

[In]

Int[(E^(-6 + 3*E^3)*(-1 - Log[4]) + E^(-6 + 3*E^3)*Log[x])/(-(x*Log[4]) + x*Log[x]),x]

[Out]

E^(-6 + 3*E^3)*Log[x] - E^(-6 + 3*E^3)*Log[Log[4] - Log[x]]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

integral=Subst(e6+3e3(1x+log(4))x+log(4)dx,x,log(x))=e6+3e3Subst(1x+log(4)x+log(4)dx,x,log(x))=e6+3e3Subst((1+1x+log(4))dx,x,log(x))=e6+3e3log(x)e6+3e3log(log(4)log(x))

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 26, normalized size = 1.13 e6+3e3(log(x4)log(log(x4)))

Antiderivative was successfully verified.

[In]

Integrate[(E^(-6 + 3*E^3)*(-1 - Log[4]) + E^(-6 + 3*E^3)*Log[x])/(-(x*Log[4]) + x*Log[x]),x]

[Out]

E^(-6 + 3*E^3)*(Log[x/4] - Log[Log[x/4]])

________________________________________________________________________________________

fricas [A]  time = 0.61, size = 28, normalized size = 1.22 e(3e36)log(x)e(3e36)log(2log(2)+log(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((exp(3*exp(3)-6)*log(x)+(-1-2*log(2))*exp(3*exp(3)-6))/(x*log(x)-2*x*log(2)),x, algorithm="fricas")

[Out]

e^(3*e^3 - 6)*log(x) - e^(3*e^3 - 6)*log(-2*log(2) + log(x))

________________________________________________________________________________________

giac [A]  time = 0.15, size = 45, normalized size = 1.96 12e(3e36)log(14π2(sgn(x)1)2+(2log(2)log(|x|))2)+e(3e36)log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((exp(3*exp(3)-6)*log(x)+(-1-2*log(2))*exp(3*exp(3)-6))/(x*log(x)-2*x*log(2)),x, algorithm="giac")

[Out]

-1/2*e^(3*e^3 - 6)*log(1/4*pi^2*(sgn(x) - 1)^2 + (2*log(2) - log(abs(x)))^2) + e^(3*e^3 - 6)*log(x)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 22, normalized size = 0.96




method result size



default e3e3e6(ln(x)ln(ln(x)2ln(2))) 22
risch e3e36ln(x)ln(ln(x)2ln(2))e3e36 29
norman e3e3e6ln(x)e3e3e6ln(2ln(2)ln(x)) 31



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(3*exp(3)-6)*ln(x)+(-1-2*ln(2))*exp(3*exp(3)-6))/(x*ln(x)-2*x*ln(2)),x,method=_RETURNVERBOSE)

[Out]

exp(exp(3))^3*exp(-6)*(ln(x)-ln(ln(x)-2*ln(2)))

________________________________________________________________________________________

maxima [B]  time = 0.43, size = 88, normalized size = 3.83 2e(3e36)log(2)log(2log(2)+log(x))+e(3e36)log(x)log(2log(2)+log(x))+((2log(2)log(x))log(2log(2)+log(x))2log(2)+log(x))e(3e36)e(3e36)log(2log(2)+log(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((exp(3*exp(3)-6)*log(x)+(-1-2*log(2))*exp(3*exp(3)-6))/(x*log(x)-2*x*log(2)),x, algorithm="maxima")

[Out]

-2*e^(3*e^3 - 6)*log(2)*log(-2*log(2) + log(x)) + e^(3*e^3 - 6)*log(x)*log(-2*log(2) + log(x)) + ((2*log(2) -
log(x))*log(-2*log(2) + log(x)) - 2*log(2) + log(x))*e^(3*e^3 - 6) - e^(3*e^3 - 6)*log(-2*log(2) + log(x))

________________________________________________________________________________________

mupad [B]  time = 2.59, size = 19, normalized size = 0.83 e3e36(ln(ln(x4))ln(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(3*exp(3) - 6)*(2*log(2) + 1) - exp(3*exp(3) - 6)*log(x))/(2*x*log(2) - x*log(x)),x)

[Out]

-exp(3*exp(3) - 6)*(log(log(x/4)) - log(x))

________________________________________________________________________________________

sympy [A]  time = 0.14, size = 32, normalized size = 1.39 e3e3log(x)e6e3e3log(log(x)2log(2))e6

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((exp(3*exp(3)-6)*ln(x)+(-1-2*ln(2))*exp(3*exp(3)-6))/(x*ln(x)-2*x*ln(2)),x)

[Out]

exp(-6)*exp(3*exp(3))*log(x) - exp(-6)*exp(3*exp(3))*log(log(x) - 2*log(2))

________________________________________________________________________________________