3.41.7 22xxlog(1625e2xx2)xlog(1625e2xx2)dx

Optimal. Leaf size=20 x+log(25log(1625e2xx2))

________________________________________________________________________________________

Rubi [A]  time = 0.18, antiderivative size = 18, normalized size of antiderivative = 0.90, number of steps used = 3, number of rules used = 2, integrand size = 40, number of rulesintegrand size = 0.050, Rules used = {6742, 6684} log(log(1625e2xx2))x

Antiderivative was successfully verified.

[In]

Int[(2 - 2*x - x*Log[(16*x^2)/(25*E^(2*x))])/(x*Log[(16*x^2)/(25*E^(2*x))]),x]

[Out]

-x + Log[Log[(16*x^2)/(25*E^(2*x))]]

Rule 6684

Int[(u_)/(y_), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[q*Log[RemoveContent[y, x]], x] /;  !Fa
lseQ[q]]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=(12(1+x)xlog(1625e2xx2))dx=x21+xxlog(1625e2xx2)dx=x+log(log(1625e2xx2))

________________________________________________________________________________________

Mathematica [A]  time = 0.15, size = 18, normalized size = 0.90 x+log(log(1625e2xx2))

Antiderivative was successfully verified.

[In]

Integrate[(2 - 2*x - x*Log[(16*x^2)/(25*E^(2*x))])/(x*Log[(16*x^2)/(25*E^(2*x))]),x]

[Out]

-x + Log[Log[(16*x^2)/(25*E^(2*x))]]

________________________________________________________________________________________

fricas [A]  time = 0.85, size = 15, normalized size = 0.75 x+log(log(1625x2e(2x)))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x*log(16/25*x^2*exp(x)^2/exp(2*x)^2)-2*x+2)/x/log(16/25*x^2*exp(x)^2/exp(2*x)^2),x, algorithm="fri
cas")

[Out]

-x + log(log(16/25*x^2*e^(-2*x)))

________________________________________________________________________________________

giac [A]  time = 0.17, size = 17, normalized size = 0.85 x+log(2xlog(1625x2))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x*log(16/25*x^2*exp(x)^2/exp(2*x)^2)-2*x+2)/x/log(16/25*x^2*exp(x)^2/exp(2*x)^2),x, algorithm="gia
c")

[Out]

-x + log(2*x - log(16/25*x^2))

________________________________________________________________________________________

maple [A]  time = 0.11, size = 16, normalized size = 0.80




method result size



norman x+ln(ln(16x2e2x25)) 16
default x+ln(ln(16x2e2xe4x25)) 24
risch x+ln(ln(ex)+i(πcsgn(ix)2csgn(ix2)2πcsgn(ix)csgn(ix2)2+πcsgn(ix2)3+πcsgn(ix2)csgn(ie2x)csgn(ix2e2x)πcsgn(ix2)csgn(ix2e2x)2πcsgn(iex)2csgn(ie2x)+2πcsgn(iex)csgn(ie2x)2πcsgn(ie2x)3πcsgn(ie2x)csgn(ix2e2x)2+πcsgn(ix2e2x)3+8iln(2)4iln(5)+4iln(x))4) 214



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-x*ln(16/25*x^2*exp(x)^2/exp(2*x)^2)-2*x+2)/x/ln(16/25*x^2*exp(x)^2/exp(2*x)^2),x,method=_RETURNVERBOSE)

[Out]

-x+ln(ln(16/25*x^2/exp(x)^2))

________________________________________________________________________________________

maxima [A]  time = 0.49, size = 19, normalized size = 0.95 x+log(xlog(5)+2log(2)+log(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x*log(16/25*x^2*exp(x)^2/exp(2*x)^2)-2*x+2)/x/log(16/25*x^2*exp(x)^2/exp(2*x)^2),x, algorithm="max
ima")

[Out]

-x + log(-x - log(5) + 2*log(2) + log(x))

________________________________________________________________________________________

mupad [B]  time = 2.64, size = 15, normalized size = 0.75 ln(ln(16x225)2x)x

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(2*x + x*log((16*x^2*exp(-2*x))/25) - 2)/(x*log((16*x^2*exp(-2*x))/25)),x)

[Out]

log(log((16*x^2)/25) - 2*x) - x

________________________________________________________________________________________

sympy [A]  time = 0.15, size = 15, normalized size = 0.75 x+log(log(16x2e2x25))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x*ln(16/25*x**2*exp(x)**2/exp(2*x)**2)-2*x+2)/x/ln(16/25*x**2*exp(x)**2/exp(2*x)**2),x)

[Out]

-x + log(log(16*x**2*exp(-2*x)/25))

________________________________________________________________________________________