3.41.12 108111x267x2+6x3+143x4+39x5+(7230x99x227x3)log(x)+(12+4x)log2(x)+(72+30x+99x2+27x3+(248x)log(x))log(15+5x)+(12+4x)log2(15+5x)279x57x2+x3+33x4+9x5+(1820x26x3)log(x)+(3+x)log2(x)+(18+20x2+6x3+(62x)log(x))log(15+5x)+(3+x)log2(15+5x)dx

Optimal. Leaf size=29 x(4+x(5+x)3+x+3x2log(x)+log(5(3+x)))

________________________________________________________________________________________

Rubi [F]  time = 1.88, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 108111x267x2+6x3+143x4+39x5+(7230x99x227x3)log(x)+(12+4x)log2(x)+(72+30x+99x2+27x3+(248x)log(x))log(15+5x)+(12+4x)log2(15+5x)279x57x2+x3+33x4+9x5+(1820x26x3)log(x)+(3+x)log2(x)+(18+20x2+6x3+(62x)log(x))log(15+5x)+(3+x)log2(15+5x)dx

Verification is not applicable to the result.

[In]

Int[(108 - 111*x - 267*x^2 + 6*x^3 + 143*x^4 + 39*x^5 + (72 - 30*x - 99*x^2 - 27*x^3)*Log[x] + (12 + 4*x)*Log[
x]^2 + (-72 + 30*x + 99*x^2 + 27*x^3 + (-24 - 8*x)*Log[x])*Log[15 + 5*x] + (12 + 4*x)*Log[15 + 5*x]^2)/(27 - 9
*x - 57*x^2 + x^3 + 33*x^4 + 9*x^5 + (18 - 20*x^2 - 6*x^3)*Log[x] + (3 + x)*Log[x]^2 + (-18 + 20*x^2 + 6*x^3 +
 (-6 - 2*x)*Log[x])*Log[15 + 5*x] + (3 + x)*Log[15 + 5*x]^2),x]

[Out]

4*x + 6*Defer[Int][(-3 + x + 3*x^2 - Log[x] + Log[5*(3 + x)])^(-2), x] + 3*Defer[Int][x/(-3 + x + 3*x^2 - Log[
x] + Log[5*(3 + x)])^2, x] - 5*Defer[Int][x^2/(-3 + x + 3*x^2 - Log[x] + Log[5*(3 + x)])^2, x] - 31*Defer[Int]
[x^3/(-3 + x + 3*x^2 - Log[x] + Log[5*(3 + x)])^2, x] - 6*Defer[Int][x^4/(-3 + x + 3*x^2 - Log[x] + Log[5*(3 +
 x)])^2, x] - 18*Defer[Int][1/((3 + x)*(-3 + x + 3*x^2 - Log[x] + Log[5*(3 + x)])^2), x] + 10*Defer[Int][x/(-3
 + x + 3*x^2 - Log[x] + Log[5*(3 + x)]), x] + 3*Defer[Int][x^2/(-3 + x + 3*x^2 - Log[x] + Log[5*(3 + x)]), x]

Rubi steps

integral=108111x267x2+6x3+143x4+39x5+4(3+x)log2(x)+3(24+10x+33x2+9x3)log(5(3+x))+4(3+x)log2(5(3+x))(3+x)log(x)(3(8+6x+9x2)+8log(5(3+x)))(3+x)(3x3x2+log(x)log(5(3+x)))2dx=(4x(15+12x+98x2+49x3+6x4)(3+x)(3+x+3x2log(x)+log(5(3+x)))2+x(10+3x)3+x+3x2log(x)+log(5(3+x)))dx=4xx(15+12x+98x2+49x3+6x4)(3+x)(3+x+3x2log(x)+log(5(3+x)))2dx+x(10+3x)3+x+3x2log(x)+log(5(3+x))dx=4x(6(3+x+3x2log(x)+log(5(3+x)))23x(3+x+3x2log(x)+log(5(3+x)))2+5x2(3+x+3x2log(x)+log(5(3+x)))2+31x3(3+x+3x2log(x)+log(5(3+x)))2+6x4(3+x+3x2log(x)+log(5(3+x)))2+18(3+x)(3+x+3x2log(x)+log(5(3+x)))2)dx+(10x3+x+3x2log(x)+log(5(3+x))+3x23+x+3x2log(x)+log(5(3+x)))dx=4x+3x(3+x+3x2log(x)+log(5(3+x)))2dx+3x23+x+3x2log(x)+log(5(3+x))dx5x2(3+x+3x2log(x)+log(5(3+x)))2dx+61(3+x+3x2log(x)+log(5(3+x)))2dx6x4(3+x+3x2log(x)+log(5(3+x)))2dx+10x3+x+3x2log(x)+log(5(3+x))dx181(3+x)(3+x+3x2log(x)+log(5(3+x)))2dx31x3(3+x+3x2log(x)+log(5(3+x)))2dx

________________________________________________________________________________________

Mathematica [A]  time = 0.09, size = 31, normalized size = 1.07 4x+x2(5+x)3+x+3x2log(x)+log(5(3+x))

Antiderivative was successfully verified.

[In]

Integrate[(108 - 111*x - 267*x^2 + 6*x^3 + 143*x^4 + 39*x^5 + (72 - 30*x - 99*x^2 - 27*x^3)*Log[x] + (12 + 4*x
)*Log[x]^2 + (-72 + 30*x + 99*x^2 + 27*x^3 + (-24 - 8*x)*Log[x])*Log[15 + 5*x] + (12 + 4*x)*Log[15 + 5*x]^2)/(
27 - 9*x - 57*x^2 + x^3 + 33*x^4 + 9*x^5 + (18 - 20*x^2 - 6*x^3)*Log[x] + (3 + x)*Log[x]^2 + (-18 + 20*x^2 + 6
*x^3 + (-6 - 2*x)*Log[x])*Log[15 + 5*x] + (3 + x)*Log[15 + 5*x]^2),x]

[Out]

4*x + (x^2*(5 + x))/(-3 + x + 3*x^2 - Log[x] + Log[5*(3 + x)])

________________________________________________________________________________________

fricas [A]  time = 0.55, size = 49, normalized size = 1.69 13x3+9x2+4xlog(5x+15)4xlog(x)12x3x2+x+log(5x+15)log(x)3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*x+12)*log(5*x+15)^2+((-8*x-24)*log(x)+27*x^3+99*x^2+30*x-72)*log(5*x+15)+(4*x+12)*log(x)^2+(-27*
x^3-99*x^2-30*x+72)*log(x)+39*x^5+143*x^4+6*x^3-267*x^2-111*x+108)/((3+x)*log(5*x+15)^2+((-2*x-6)*log(x)+6*x^3
+20*x^2-18)*log(5*x+15)+(3+x)*log(x)^2+(-6*x^3-20*x^2+18)*log(x)+9*x^5+33*x^4+x^3-57*x^2-9*x+27),x, algorithm=
"fricas")

[Out]

(13*x^3 + 9*x^2 + 4*x*log(5*x + 15) - 4*x*log(x) - 12*x)/(3*x^2 + x + log(5*x + 15) - log(x) - 3)

________________________________________________________________________________________

giac [A]  time = 0.31, size = 34, normalized size = 1.17 4x+x3+5x23x2+x+log(5x+15)log(x)3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*x+12)*log(5*x+15)^2+((-8*x-24)*log(x)+27*x^3+99*x^2+30*x-72)*log(5*x+15)+(4*x+12)*log(x)^2+(-27*
x^3-99*x^2-30*x+72)*log(x)+39*x^5+143*x^4+6*x^3-267*x^2-111*x+108)/((3+x)*log(5*x+15)^2+((-2*x-6)*log(x)+6*x^3
+20*x^2-18)*log(5*x+15)+(3+x)*log(x)^2+(-6*x^3-20*x^2+18)*log(x)+9*x^5+33*x^4+x^3-57*x^2-9*x+27),x, algorithm=
"giac")

[Out]

4*x + (x^3 + 5*x^2)/(3*x^2 + x + log(5*x + 15) - log(x) - 3)

________________________________________________________________________________________

maple [A]  time = 0.05, size = 32, normalized size = 1.10




method result size



risch 4x+x2(5+x)ln(5x+15)3+3x2ln(x)+x 32



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((4*x+12)*ln(5*x+15)^2+((-8*x-24)*ln(x)+27*x^3+99*x^2+30*x-72)*ln(5*x+15)+(4*x+12)*ln(x)^2+(-27*x^3-99*x^2
-30*x+72)*ln(x)+39*x^5+143*x^4+6*x^3-267*x^2-111*x+108)/((3+x)*ln(5*x+15)^2+((-2*x-6)*ln(x)+6*x^3+20*x^2-18)*l
n(5*x+15)+(3+x)*ln(x)^2+(-6*x^3-20*x^2+18)*ln(x)+9*x^5+33*x^4+x^3-57*x^2-9*x+27),x,method=_RETURNVERBOSE)

[Out]

4*x+x^2*(5+x)/(ln(5*x+15)-3+3*x^2-ln(x)+x)

________________________________________________________________________________________

maxima [A]  time = 1.25, size = 51, normalized size = 1.76 13x3+9x2+4x(log(5)3)+4xlog(x+3)4xlog(x)3x2+x+log(5)+log(x+3)log(x)3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*x+12)*log(5*x+15)^2+((-8*x-24)*log(x)+27*x^3+99*x^2+30*x-72)*log(5*x+15)+(4*x+12)*log(x)^2+(-27*
x^3-99*x^2-30*x+72)*log(x)+39*x^5+143*x^4+6*x^3-267*x^2-111*x+108)/((3+x)*log(5*x+15)^2+((-2*x-6)*log(x)+6*x^3
+20*x^2-18)*log(5*x+15)+(3+x)*log(x)^2+(-6*x^3-20*x^2+18)*log(x)+9*x^5+33*x^4+x^3-57*x^2-9*x+27),x, algorithm=
"maxima")

[Out]

(13*x^3 + 9*x^2 + 4*x*(log(5) - 3) + 4*x*log(x + 3) - 4*x*log(x))/(3*x^2 + x + log(5) + log(x + 3) - log(x) -
3)

________________________________________________________________________________________

mupad [B]  time = 3.85, size = 66, normalized size = 2.28 19ln(x)19ln(5x+15)163x+48xln(5x+15)48xln(x)+51x2+156x3+5712(x+ln(5x+15)ln(x)+3x23)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((log(5*x + 15)*(30*x - log(x)*(8*x + 24) + 99*x^2 + 27*x^3 - 72) - 111*x + log(5*x + 15)^2*(4*x + 12) - 26
7*x^2 + 6*x^3 + 143*x^4 + 39*x^5 + log(x)^2*(4*x + 12) - log(x)*(30*x + 99*x^2 + 27*x^3 - 72) + 108)/(log(5*x
+ 15)^2*(x + 3) - log(x)*(20*x^2 + 6*x^3 - 18) - 9*x - log(5*x + 15)*(log(x)*(2*x + 6) - 20*x^2 - 6*x^3 + 18)
+ log(x)^2*(x + 3) - 57*x^2 + x^3 + 33*x^4 + 9*x^5 + 27),x)

[Out]

(19*log(x) - 19*log(5*x + 15) - 163*x + 48*x*log(5*x + 15) - 48*x*log(x) + 51*x^2 + 156*x^3 + 57)/(12*(x + log
(5*x + 15) - log(x) + 3*x^2 - 3))

________________________________________________________________________________________

sympy [A]  time = 0.37, size = 29, normalized size = 1.00 4x+x3+5x23x2+xlog(x)+log(5x+15)3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*x+12)*ln(5*x+15)**2+((-8*x-24)*ln(x)+27*x**3+99*x**2+30*x-72)*ln(5*x+15)+(4*x+12)*ln(x)**2+(-27*
x**3-99*x**2-30*x+72)*ln(x)+39*x**5+143*x**4+6*x**3-267*x**2-111*x+108)/((3+x)*ln(5*x+15)**2+((-2*x-6)*ln(x)+6
*x**3+20*x**2-18)*ln(5*x+15)+(3+x)*ln(x)**2+(-6*x**3-20*x**2+18)*ln(x)+9*x**5+33*x**4+x**3-57*x**2-9*x+27),x)

[Out]

4*x + (x**3 + 5*x**2)/(3*x**2 + x - log(x) + log(5*x + 15) - 3)

________________________________________________________________________________________