Optimal. Leaf size=12 \[ -\frac {1}{12} x^2 \log (\log (20+x)) \]
________________________________________________________________________________________
Rubi [F] time = 0.24, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-x^2+\left (-40 x-2 x^2\right ) \log (20+x) \log (\log (20+x))}{(240+12 x) \log (20+x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1}{12} x \left (-\frac {x}{(20+x) \log (20+x)}-2 \log (\log (20+x))\right ) \, dx\\ &=\frac {1}{12} \int x \left (-\frac {x}{(20+x) \log (20+x)}-2 \log (\log (20+x))\right ) \, dx\\ &=\frac {1}{12} \int \left (-\frac {x^2}{(20+x) \log (20+x)}-2 x \log (\log (20+x))\right ) \, dx\\ &=-\left (\frac {1}{12} \int \frac {x^2}{(20+x) \log (20+x)} \, dx\right )-\frac {1}{6} \int x \log (\log (20+x)) \, dx\\ &=-\left (\frac {1}{12} \operatorname {Subst}\left (\int \frac {(-20+x)^2}{x \log (x)} \, dx,x,20+x\right )\right )-\frac {1}{6} \int x \log (\log (20+x)) \, dx\\ &=-\left (\frac {1}{12} \operatorname {Subst}\left (\int \left (-\frac {40}{\log (x)}+\frac {400}{x \log (x)}+\frac {x}{\log (x)}\right ) \, dx,x,20+x\right )\right )-\frac {1}{6} \int x \log (\log (20+x)) \, dx\\ &=-\left (\frac {1}{12} \operatorname {Subst}\left (\int \frac {x}{\log (x)} \, dx,x,20+x\right )\right )-\frac {1}{6} \int x \log (\log (20+x)) \, dx+\frac {10}{3} \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,20+x\right )-\frac {100}{3} \operatorname {Subst}\left (\int \frac {1}{x \log (x)} \, dx,x,20+x\right )\\ &=\frac {10 \text {li}(20+x)}{3}-\frac {1}{12} \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (20+x)\right )-\frac {1}{6} \int x \log (\log (20+x)) \, dx-\frac {100}{3} \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (20+x)\right )\\ &=-\frac {1}{12} \text {Ei}(2 \log (20+x))-\frac {100}{3} \log (\log (20+x))+\frac {10 \text {li}(20+x)}{3}-\frac {1}{6} \int x \log (\log (20+x)) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 12, normalized size = 1.00 \begin {gather*} -\frac {1}{12} x^2 \log (\log (20+x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 10, normalized size = 0.83 \begin {gather*} -\frac {1}{12} \, x^{2} \log \left (\log \left (x + 20\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 10, normalized size = 0.83 \begin {gather*} -\frac {1}{12} \, x^{2} \log \left (\log \left (x + 20\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 11, normalized size = 0.92
method | result | size |
norman | \(-\frac {x^{2} \ln \left (\ln \left (20+x \right )\right )}{12}\) | \(11\) |
risch | \(-\frac {x^{2} \ln \left (\ln \left (20+x \right )\right )}{12}\) | \(11\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 10, normalized size = 0.83 \begin {gather*} -\frac {1}{12} \, x^{2} \log \left (\log \left (x + 20\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.78, size = 10, normalized size = 0.83 \begin {gather*} -\frac {x^2\,\ln \left (\ln \left (x+20\right )\right )}{12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.51, size = 24, normalized size = 2.00 \begin {gather*} \left (\frac {100}{9} - \frac {x^{2}}{12}\right ) \log {\left (\log {\left (x + 20 \right )} \right )} - \frac {100 \log {\left (\log {\left (x + 20 \right )} \right )}}{9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________