3.41.13 x2+(40x2x2)log(20+x)log(log(20+x))(240+12x)log(20+x)dx

Optimal. Leaf size=12 112x2log(log(20+x))

________________________________________________________________________________________

Rubi [F]  time = 0.24, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} x2+(40x2x2)log(20+x)log(log(20+x))(240+12x)log(20+x)dx

Verification is not applicable to the result.

[In]

Int[(-x^2 + (-40*x - 2*x^2)*Log[20 + x]*Log[Log[20 + x]])/((240 + 12*x)*Log[20 + x]),x]

[Out]

-1/12*ExpIntegralEi[2*Log[20 + x]] - (100*Log[Log[20 + x]])/3 + (10*LogIntegral[20 + x])/3 - Defer[Int][x*Log[
Log[20 + x]], x]/6

Rubi steps

integral=112x(x(20+x)log(20+x)2log(log(20+x)))dx=112x(x(20+x)log(20+x)2log(log(20+x)))dx=112(x2(20+x)log(20+x)2xlog(log(20+x)))dx=(112x2(20+x)log(20+x)dx)16xlog(log(20+x))dx=(112Subst((20+x)2xlog(x)dx,x,20+x))16xlog(log(20+x))dx=(112Subst((40log(x)+400xlog(x)+xlog(x))dx,x,20+x))16xlog(log(20+x))dx=(112Subst(xlog(x)dx,x,20+x))16xlog(log(20+x))dx+103Subst(1log(x)dx,x,20+x)1003Subst(1xlog(x)dx,x,20+x)=10li(20+x)3112Subst(e2xxdx,x,log(20+x))16xlog(log(20+x))dx1003Subst(1xdx,x,log(20+x))=112Ei(2log(20+x))1003log(log(20+x))+10li(20+x)316xlog(log(20+x))dx

________________________________________________________________________________________

Mathematica [A]  time = 0.06, size = 12, normalized size = 1.00 112x2log(log(20+x))

Antiderivative was successfully verified.

[In]

Integrate[(-x^2 + (-40*x - 2*x^2)*Log[20 + x]*Log[Log[20 + x]])/((240 + 12*x)*Log[20 + x]),x]

[Out]

-1/12*(x^2*Log[Log[20 + x]])

________________________________________________________________________________________

fricas [A]  time = 0.64, size = 10, normalized size = 0.83 112x2log(log(x+20))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*x^2-40*x)*log(20+x)*log(log(20+x))-x^2)/(12*x+240)/log(20+x),x, algorithm="fricas")

[Out]

-1/12*x^2*log(log(x + 20))

________________________________________________________________________________________

giac [A]  time = 0.27, size = 10, normalized size = 0.83 112x2log(log(x+20))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*x^2-40*x)*log(20+x)*log(log(20+x))-x^2)/(12*x+240)/log(20+x),x, algorithm="giac")

[Out]

-1/12*x^2*log(log(x + 20))

________________________________________________________________________________________

maple [A]  time = 0.09, size = 11, normalized size = 0.92




method result size



norman x2ln(ln(20+x))12 11
risch x2ln(ln(20+x))12 11



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-2*x^2-40*x)*ln(20+x)*ln(ln(20+x))-x^2)/(12*x+240)/ln(20+x),x,method=_RETURNVERBOSE)

[Out]

-1/12*x^2*ln(ln(20+x))

________________________________________________________________________________________

maxima [A]  time = 0.40, size = 10, normalized size = 0.83 112x2log(log(x+20))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*x^2-40*x)*log(20+x)*log(log(20+x))-x^2)/(12*x+240)/log(20+x),x, algorithm="maxima")

[Out]

-1/12*x^2*log(log(x + 20))

________________________________________________________________________________________

mupad [B]  time = 3.78, size = 10, normalized size = 0.83 x2ln(ln(x+20))12

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(x^2 + log(x + 20)*log(log(x + 20))*(40*x + 2*x^2))/(log(x + 20)*(12*x + 240)),x)

[Out]

-(x^2*log(log(x + 20)))/12

________________________________________________________________________________________

sympy [A]  time = 0.51, size = 24, normalized size = 2.00 (1009x212)log(log(x+20))100log(log(x+20))9

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*x**2-40*x)*ln(20+x)*ln(ln(20+x))-x**2)/(12*x+240)/ln(20+x),x)

[Out]

(100/9 - x**2/12)*log(log(x + 20)) - 100*log(log(x + 20))/9

________________________________________________________________________________________