3.41.15
Optimal. Leaf size=31
________________________________________________________________________________________
Rubi [F] time = 2.21, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(-x^5 + E^(2*(2*x - E^25*x + x^2 - x*Log[x]))*(-4 + 2*x - 2*E^25*x + 4*x^2 - 2*x*Log[x]) + E^((3*(2*x - E^
25*x + x^2 - x*Log[x]))/2)*(-12*x + 6*x^2 - 6*E^25*x^2 + 12*x^3 - 6*x^2*Log[x]) + E^(2*x - E^25*x + x^2 - x*Lo
g[x])*(-12*x^2 + 6*x^3 - 6*E^25*x^3 + 12*x^4 - 6*x^3*Log[x]) + E^((2*x - E^25*x + x^2 - x*Log[x])/2)*(-4*x^3 +
2*x^4 - 2*E^25*x^4 + 4*x^5 - 2*x^4*Log[x]))/x^5,x]
[Out]
-x - 4*Defer[Int][E^(2*x*(2 - E^25 + x))*x^(-5 - 2*x), x] + 2*(1 - E^25)*Defer[Int][E^(2*x*(2 - E^25 + x))*x^(
-4 - 2*x), x] - 2*Log[x]*Defer[Int][E^(2*x*(2 - E^25 + x))*x^(-4 - 2*x), x] + 4*Defer[Int][E^(2*x*(2 - E^25 +
x))*x^(-3 - 2*x), x] - 12*Defer[Int][E^((3*x*(2 - E^25 + x))/2)*x^(-4 - (3*x)/2), x] + 6*(1 - E^25)*Defer[Int]
[E^((3*x*(2 - E^25 + x))/2)*x^(-3 - (3*x)/2), x] - 6*Log[x]*Defer[Int][E^((3*x*(2 - E^25 + x))/2)*x^(-3 - (3*x
)/2), x] + 12*Defer[Int][E^((3*x*(2 - E^25 + x))/2)*x^(-2 - (3*x)/2), x] - 12*Defer[Int][E^((2 - E^25)*x + x^2
)*x^(-3 - x), x] + 6*(1 - E^25)*Defer[Int][E^((2 - E^25)*x + x^2)*x^(-2 - x), x] - 6*Log[x]*Defer[Int][E^((2 -
E^25)*x + x^2)*x^(-2 - x), x] + 12*Defer[Int][E^((2 - E^25)*x + x^2)*x^(-1 - x), x] - 4*Defer[Int][E^((x*(2 -
E^25 + x))/2)*x^(-2 - x/2), x] + 2*(1 - E^25)*Defer[Int][E^((x*(2 - E^25 + x))/2)*x^(-1 - x/2), x] - 2*Log[x]
*Defer[Int][E^((x*(2 - E^25 + x))/2)*x^(-1 - x/2), x] + 4*Defer[Int][E^((x*(2 - E^25 + x))/2)/x^(x/2), x] + 2*
Defer[Int][Defer[Int][E^(2*x*(2 - E^25 + x))*x^(-4 - 2*x), x]/x, x] + 6*Defer[Int][Defer[Int][E^((3*x*(2 - E^2
5 + x))/2)*x^(-3 - (3*x)/2), x]/x, x] + 6*Defer[Int][Defer[Int][E^((2 - E^25)*x + x^2)*x^(-2 - x), x]/x, x] +
2*Defer[Int][Defer[Int][E^((x*(2 - E^25 + x))/2)*x^(-1 - x/2), x]/x, x]
Rubi steps
________________________________________________________________________________________
Mathematica [B] time = 1.57, size = 113, normalized size = 3.65
Antiderivative was successfully verified.
[In]
Integrate[(-x^5 + E^(2*(2*x - E^25*x + x^2 - x*Log[x]))*(-4 + 2*x - 2*E^25*x + 4*x^2 - 2*x*Log[x]) + E^((3*(2*
x - E^25*x + x^2 - x*Log[x]))/2)*(-12*x + 6*x^2 - 6*E^25*x^2 + 12*x^3 - 6*x^2*Log[x]) + E^(2*x - E^25*x + x^2
- x*Log[x])*(-12*x^2 + 6*x^3 - 6*E^25*x^3 + 12*x^4 - 6*x^3*Log[x]) + E^((2*x - E^25*x + x^2 - x*Log[x])/2)*(-4
*x^3 + 2*x^4 - 2*E^25*x^4 + 4*x^5 - 2*x^4*Log[x]))/x^5,x]
[Out]
-x + E^(-2*(-2 + E^25)*x + 2*x^2)*x^(-4 - 2*x) + 4*E^((-3*(-2 + E^25)*x)/2 + (3*x^2)/2)*x^(-3 - (3*x)/2) + 6*E
^(-((-2 + E^25)*x) + x^2)*x^(-2 - x) + 4*E^(-1/2*((-2 + E^25)*x) + x^2/2)*x^(-1 - x/2)
________________________________________________________________________________________
fricas [B] time = 0.75, size = 100, normalized size = 3.23
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-2*x*log(x)-2*x*exp(25)+4*x^2+2*x-4)*exp(-1/2*x*log(x)-1/2*x*exp(25)+1/2*x^2+x)^4+(-6*x^2*log(x)-6
*x^2*exp(25)+12*x^3+6*x^2-12*x)*exp(-1/2*x*log(x)-1/2*x*exp(25)+1/2*x^2+x)^3+(-6*x^3*log(x)-6*x^3*exp(25)+12*x
^4+6*x^3-12*x^2)*exp(-1/2*x*log(x)-1/2*x*exp(25)+1/2*x^2+x)^2+(-2*x^4*log(x)-2*x^4*exp(25)+4*x^5+2*x^4-4*x^3)*
exp(-1/2*x*log(x)-1/2*x*exp(25)+1/2*x^2+x)-x^5)/x^5,x, algorithm="fricas")
[Out]
-(x^5 - 4*x^3*e^(1/2*x^2 - 1/2*x*e^25 - 1/2*x*log(x) + x) - 6*x^2*e^(x^2 - x*e^25 - x*log(x) + 2*x) - 4*x*e^(3
/2*x^2 - 3/2*x*e^25 - 3/2*x*log(x) + 3*x) - e^(2*x^2 - 2*x*e^25 - 2*x*log(x) + 4*x))/x^4
________________________________________________________________________________________
giac [B] time = 1.36, size = 100, normalized size = 3.23
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-2*x*log(x)-2*x*exp(25)+4*x^2+2*x-4)*exp(-1/2*x*log(x)-1/2*x*exp(25)+1/2*x^2+x)^4+(-6*x^2*log(x)-6
*x^2*exp(25)+12*x^3+6*x^2-12*x)*exp(-1/2*x*log(x)-1/2*x*exp(25)+1/2*x^2+x)^3+(-6*x^3*log(x)-6*x^3*exp(25)+12*x
^4+6*x^3-12*x^2)*exp(-1/2*x*log(x)-1/2*x*exp(25)+1/2*x^2+x)^2+(-2*x^4*log(x)-2*x^4*exp(25)+4*x^5+2*x^4-4*x^3)*
exp(-1/2*x*log(x)-1/2*x*exp(25)+1/2*x^2+x)-x^5)/x^5,x, algorithm="giac")
[Out]
-(x^5 - 4*x^3*e^(1/2*x^2 - 1/2*x*e^25 - 1/2*x*log(x) + x) - 6*x^2*e^(x^2 - x*e^25 - x*log(x) + 2*x) - 4*x*e^(3
/2*x^2 - 3/2*x*e^25 - 3/2*x*log(x) + 3*x) - e^(2*x^2 - 2*x*e^25 - 2*x*log(x) + 4*x))/x^4
________________________________________________________________________________________
maple [B] time = 0.14, size = 94, normalized size = 3.03
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((-2*x*ln(x)-2*x*exp(25)+4*x^2+2*x-4)*exp(-1/2*x*ln(x)-1/2*x*exp(25)+1/2*x^2+x)^4+(-6*x^2*ln(x)-6*x^2*exp(
25)+12*x^3+6*x^2-12*x)*exp(-1/2*x*ln(x)-1/2*x*exp(25)+1/2*x^2+x)^3+(-6*x^3*ln(x)-6*x^3*exp(25)+12*x^4+6*x^3-12
*x^2)*exp(-1/2*x*ln(x)-1/2*x*exp(25)+1/2*x^2+x)^2+(-2*x^4*ln(x)-2*x^4*exp(25)+4*x^5+2*x^4-4*x^3)*exp(-1/2*x*ln
(x)-1/2*x*exp(25)+1/2*x^2+x)-x^5)/x^5,x,method=_RETURNVERBOSE)
[Out]
-x+1/x^4*(x^(-1/2*x))^4*exp(-2*x*(exp(25)-x-2))+4/x^3*(x^(-1/2*x))^3*exp(-3/2*x*(exp(25)-x-2))+6/x^2*(x^(-1/2*
x))^2*exp(-x*(exp(25)-x-2))+4/x*x^(-1/2*x)*exp(-1/2*x*(exp(25)-x-2))
________________________________________________________________________________________
maxima [B] time = 0.46, size = 99, normalized size = 3.19
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-2*x*log(x)-2*x*exp(25)+4*x^2+2*x-4)*exp(-1/2*x*log(x)-1/2*x*exp(25)+1/2*x^2+x)^4+(-6*x^2*log(x)-6
*x^2*exp(25)+12*x^3+6*x^2-12*x)*exp(-1/2*x*log(x)-1/2*x*exp(25)+1/2*x^2+x)^3+(-6*x^3*log(x)-6*x^3*exp(25)+12*x
^4+6*x^3-12*x^2)*exp(-1/2*x*log(x)-1/2*x*exp(25)+1/2*x^2+x)^2+(-2*x^4*log(x)-2*x^4*exp(25)+4*x^5+2*x^4-4*x^3)*
exp(-1/2*x*log(x)-1/2*x*exp(25)+1/2*x^2+x)-x^5)/x^5,x, algorithm="maxima")
[Out]
-x + (4*x^3*e^(1/2*x^2 - 1/2*x*e^25 + 3/2*x*log(x) + x) + 6*x^2*e^(x^2 - x*e^25 + x*log(x) + 2*x) + 4*x*e^(3/2
*x^2 - 3/2*x*e^25 + 1/2*x*log(x) + 3*x) + e^(2*x^2 - 2*x*e^25 + 4*x))/(x^4*x^(2*x))
________________________________________________________________________________________
mupad [B] time = 3.73, size = 101, normalized size = 3.26
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(exp(3*x - (3*x*exp(25))/2 - (3*x*log(x))/2 + (3*x^2)/2)*(12*x + 6*x^2*log(x) + 6*x^2*exp(25) - 6*x^2 - 1
2*x^3) + exp(x - (x*exp(25))/2 - (x*log(x))/2 + x^2/2)*(2*x^4*log(x) + 2*x^4*exp(25) + 4*x^3 - 2*x^4 - 4*x^5)
+ exp(2*x - x*exp(25) - x*log(x) + x^2)*(6*x^3*log(x) + 6*x^3*exp(25) + 12*x^2 - 6*x^3 - 12*x^4) + exp(4*x - 2
*x*exp(25) - 2*x*log(x) + 2*x^2)*(2*x*exp(25) - 2*x + 2*x*log(x) - 4*x^2 + 4) + x^5)/x^5,x)
[Out]
(4*exp(3*x - (3*x*exp(25))/2 - (3*x*log(x))/2 + (3*x^2)/2))/x^3 - x + (4*exp(x - (x*exp(25))/2 - (x*log(x))/2
+ x^2/2))/x + (6*exp(2*x - x*exp(25) + x^2))/(x^x*x^2) + exp(4*x - 2*x*exp(25) + 2*x^2)/(x^(2*x)*x^4)
________________________________________________________________________________________
sympy [B] time = 0.50, size = 116, normalized size = 3.74
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-2*x*ln(x)-2*x*exp(25)+4*x**2+2*x-4)*exp(-1/2*x*ln(x)-1/2*x*exp(25)+1/2*x**2+x)**4+(-6*x**2*ln(x)-
6*x**2*exp(25)+12*x**3+6*x**2-12*x)*exp(-1/2*x*ln(x)-1/2*x*exp(25)+1/2*x**2+x)**3+(-6*x**3*ln(x)-6*x**3*exp(25
)+12*x**4+6*x**3-12*x**2)*exp(-1/2*x*ln(x)-1/2*x*exp(25)+1/2*x**2+x)**2+(-2*x**4*ln(x)-2*x**4*exp(25)+4*x**5+2
*x**4-4*x**3)*exp(-1/2*x*ln(x)-1/2*x*exp(25)+1/2*x**2+x)-x**5)/x**5,x)
[Out]
-x + (4*x**9*exp(x**2/2 - x*log(x)/2 - x*exp(25)/2 + x) + 6*x**8*exp(x**2 - x*log(x) - x*exp(25) + 2*x) + 4*x*
*7*exp(3*x**2/2 - 3*x*log(x)/2 - 3*x*exp(25)/2 + 3*x) + x**6*exp(2*x**2 - 2*x*log(x) - 2*x*exp(25) + 4*x))/x**
10
________________________________________________________________________________________