3.41.15 x5+e2(2xe25x+x2xlog(x))(4+2x2e25x+4x22xlog(x))+e32(2xe25x+x2xlog(x))(12x+6x26e25x2+12x36x2log(x))+e2xe25x+x2xlog(x)(12x2+6x36e25x3+12x46x3log(x))+e12(2xe25x+x2xlog(x))(4x3+2x42e25x4+4x52x4log(x))x5dx

Optimal. Leaf size=31 x+(e12x(2e25+xlog(x))+x)4x4

________________________________________________________________________________________

Rubi [F]  time = 2.21, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} x5+e2(2xe25x+x2xlog(x))(4+2x2e25x+4x22xlog(x))+e32(2xe25x+x2xlog(x))(12x+6x26e25x2+12x36x2log(x))+e2xe25x+x2xlog(x)(12x2+6x36e25x3+12x46x3log(x))+e12(2xe25x+x2xlog(x))(4x3+2x42e25x4+4x52x4log(x))x5dx

Verification is not applicable to the result.

[In]

Int[(-x^5 + E^(2*(2*x - E^25*x + x^2 - x*Log[x]))*(-4 + 2*x - 2*E^25*x + 4*x^2 - 2*x*Log[x]) + E^((3*(2*x - E^
25*x + x^2 - x*Log[x]))/2)*(-12*x + 6*x^2 - 6*E^25*x^2 + 12*x^3 - 6*x^2*Log[x]) + E^(2*x - E^25*x + x^2 - x*Lo
g[x])*(-12*x^2 + 6*x^3 - 6*E^25*x^3 + 12*x^4 - 6*x^3*Log[x]) + E^((2*x - E^25*x + x^2 - x*Log[x])/2)*(-4*x^3 +
 2*x^4 - 2*E^25*x^4 + 4*x^5 - 2*x^4*Log[x]))/x^5,x]

[Out]

-x - 4*Defer[Int][E^(2*x*(2 - E^25 + x))*x^(-5 - 2*x), x] + 2*(1 - E^25)*Defer[Int][E^(2*x*(2 - E^25 + x))*x^(
-4 - 2*x), x] - 2*Log[x]*Defer[Int][E^(2*x*(2 - E^25 + x))*x^(-4 - 2*x), x] + 4*Defer[Int][E^(2*x*(2 - E^25 +
x))*x^(-3 - 2*x), x] - 12*Defer[Int][E^((3*x*(2 - E^25 + x))/2)*x^(-4 - (3*x)/2), x] + 6*(1 - E^25)*Defer[Int]
[E^((3*x*(2 - E^25 + x))/2)*x^(-3 - (3*x)/2), x] - 6*Log[x]*Defer[Int][E^((3*x*(2 - E^25 + x))/2)*x^(-3 - (3*x
)/2), x] + 12*Defer[Int][E^((3*x*(2 - E^25 + x))/2)*x^(-2 - (3*x)/2), x] - 12*Defer[Int][E^((2 - E^25)*x + x^2
)*x^(-3 - x), x] + 6*(1 - E^25)*Defer[Int][E^((2 - E^25)*x + x^2)*x^(-2 - x), x] - 6*Log[x]*Defer[Int][E^((2 -
 E^25)*x + x^2)*x^(-2 - x), x] + 12*Defer[Int][E^((2 - E^25)*x + x^2)*x^(-1 - x), x] - 4*Defer[Int][E^((x*(2 -
 E^25 + x))/2)*x^(-2 - x/2), x] + 2*(1 - E^25)*Defer[Int][E^((x*(2 - E^25 + x))/2)*x^(-1 - x/2), x] - 2*Log[x]
*Defer[Int][E^((x*(2 - E^25 + x))/2)*x^(-1 - x/2), x] + 4*Defer[Int][E^((x*(2 - E^25 + x))/2)/x^(x/2), x] + 2*
Defer[Int][Defer[Int][E^(2*x*(2 - E^25 + x))*x^(-4 - 2*x), x]/x, x] + 6*Defer[Int][Defer[Int][E^((3*x*(2 - E^2
5 + x))/2)*x^(-3 - (3*x)/2), x]/x, x] + 6*Defer[Int][Defer[Int][E^((2 - E^25)*x + x^2)*x^(-2 - x), x]/x, x] +
2*Defer[Int][Defer[Int][E^((x*(2 - E^25 + x))/2)*x^(-1 - x/2), x]/x, x]

Rubi steps

integral=(1+2e2x(2e25+x)x52x(2+(1e25)x+2x2xlog(x))+6e32x(2e25+x)x43x2(2+(1e25)x+2x2xlog(x))+6e(2e25)x+x2x3x(2+(1e25)x+2x2xlog(x))+2e12x(2e25+x)x2x2(2+(1e25)x+2x2xlog(x)))dx=x+2e2x(2e25+x)x52x(2+(1e25)x+2x2xlog(x))dx+2e12x(2e25+x)x2x2(2+(1e25)x+2x2xlog(x))dx+6e32x(2e25+x)x43x2(2+(1e25)x+2x2xlog(x))dx+6e(2e25)x+x2x3x(2+(1e25)x+2x2xlog(x))dx=x+2(2e2x(2e25+x)x52x+e2x(2e25+x)(1e25)x42x+2e2x(2e25+x)x32xe2x(2e25+x)x42xlog(x))dx+2(2e12x(2e25+x)x2x2+e12x(2e25+x)(1e25)x1x2+2e12x(2e25+x)xx/2e12x(2e25+x)x1x2log(x))dx+6(2e32x(2e25+x)x43x2+e32x(2e25+x)(1e25)x33x2+2e32x(2e25+x)x23x2e32x(2e25+x)x33x2log(x))dx+6(2e(2e25)x+x2x3x+e(2e25)x+x2(1e25)x2x+2e(2e25)x+x2x1xe(2e25)x+x2x2xlog(x))dx=x2e2x(2e25+x)x42xlog(x)dx2e12x(2e25+x)x1x2log(x)dx4e2x(2e25+x)x52xdx+4e2x(2e25+x)x32xdx4e12x(2e25+x)x2x2dx+4e12x(2e25+x)xx/2dx6e32x(2e25+x)x33x2log(x)dx6e(2e25)x+x2x2xlog(x)dx12e32x(2e25+x)x43x2dx+12e32x(2e25+x)x23x2dx12e(2e25)x+x2x3xdx+12e(2e25)x+x2x1xdx+(2(1e25))e2x(2e25+x)x42xdx+(2(1e25))e12x(2e25+x)x1x2dx+(6(1e25))e32x(2e25+x)x33x2dx+(6(1e25))e(2e25)x+x2x2xdx=x+2e2x(2e25+x)x42xdxxdx+2e12x(2e25+x)x1x2dxxdx4e2x(2e25+x)x52xdx+4e2x(2e25+x)x32xdx4e12x(2e25+x)x2x2dx+4e12x(2e25+x)xx/2dx+6e32x(2e25+x)x33x2dxxdx+6e(2e25)x+x2x2xdxxdx12e32x(2e25+x)x43x2dx+12e32x(2e25+x)x23x2dx12e(2e25)x+x2x3xdx+12e(2e25)x+x2x1xdx+(2(1e25))e2x(2e25+x)x42xdx+(2(1e25))e12x(2e25+x)x1x2dx+(6(1e25))e32x(2e25+x)x33x2dx+(6(1e25))e(2e25)x+x2x2xdx(2log(x))e2x(2e25+x)x42xdx(2log(x))e12x(2e25+x)x1x2dx(6log(x))e32x(2e25+x)x33x2dx(6log(x))e(2e25)x+x2x2xdx

________________________________________________________________________________________

Mathematica [B]  time = 1.57, size = 113, normalized size = 3.65 x+e2(2+e25)x+2x2x42x+4e32(2+e25)x+3x22x33x2+6e((2+e25)x)+x2x2x+4e12(2+e25)x+x22x1x2

Antiderivative was successfully verified.

[In]

Integrate[(-x^5 + E^(2*(2*x - E^25*x + x^2 - x*Log[x]))*(-4 + 2*x - 2*E^25*x + 4*x^2 - 2*x*Log[x]) + E^((3*(2*
x - E^25*x + x^2 - x*Log[x]))/2)*(-12*x + 6*x^2 - 6*E^25*x^2 + 12*x^3 - 6*x^2*Log[x]) + E^(2*x - E^25*x + x^2
- x*Log[x])*(-12*x^2 + 6*x^3 - 6*E^25*x^3 + 12*x^4 - 6*x^3*Log[x]) + E^((2*x - E^25*x + x^2 - x*Log[x])/2)*(-4
*x^3 + 2*x^4 - 2*E^25*x^4 + 4*x^5 - 2*x^4*Log[x]))/x^5,x]

[Out]

-x + E^(-2*(-2 + E^25)*x + 2*x^2)*x^(-4 - 2*x) + 4*E^((-3*(-2 + E^25)*x)/2 + (3*x^2)/2)*x^(-3 - (3*x)/2) + 6*E
^(-((-2 + E^25)*x) + x^2)*x^(-2 - x) + 4*E^(-1/2*((-2 + E^25)*x) + x^2/2)*x^(-1 - x/2)

________________________________________________________________________________________

fricas [B]  time = 0.75, size = 100, normalized size = 3.23 x54x3e(12x212xe2512xlog(x)+x)6x2e(x2xe25xlog(x)+2x)4xe(32x232xe2532xlog(x)+3x)e(2x22xe252xlog(x)+4x)x4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*x*log(x)-2*x*exp(25)+4*x^2+2*x-4)*exp(-1/2*x*log(x)-1/2*x*exp(25)+1/2*x^2+x)^4+(-6*x^2*log(x)-6
*x^2*exp(25)+12*x^3+6*x^2-12*x)*exp(-1/2*x*log(x)-1/2*x*exp(25)+1/2*x^2+x)^3+(-6*x^3*log(x)-6*x^3*exp(25)+12*x
^4+6*x^3-12*x^2)*exp(-1/2*x*log(x)-1/2*x*exp(25)+1/2*x^2+x)^2+(-2*x^4*log(x)-2*x^4*exp(25)+4*x^5+2*x^4-4*x^3)*
exp(-1/2*x*log(x)-1/2*x*exp(25)+1/2*x^2+x)-x^5)/x^5,x, algorithm="fricas")

[Out]

-(x^5 - 4*x^3*e^(1/2*x^2 - 1/2*x*e^25 - 1/2*x*log(x) + x) - 6*x^2*e^(x^2 - x*e^25 - x*log(x) + 2*x) - 4*x*e^(3
/2*x^2 - 3/2*x*e^25 - 3/2*x*log(x) + 3*x) - e^(2*x^2 - 2*x*e^25 - 2*x*log(x) + 4*x))/x^4

________________________________________________________________________________________

giac [B]  time = 1.36, size = 100, normalized size = 3.23 x54x3e(12x212xe2512xlog(x)+x)6x2e(x2xe25xlog(x)+2x)4xe(32x232xe2532xlog(x)+3x)e(2x22xe252xlog(x)+4x)x4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*x*log(x)-2*x*exp(25)+4*x^2+2*x-4)*exp(-1/2*x*log(x)-1/2*x*exp(25)+1/2*x^2+x)^4+(-6*x^2*log(x)-6
*x^2*exp(25)+12*x^3+6*x^2-12*x)*exp(-1/2*x*log(x)-1/2*x*exp(25)+1/2*x^2+x)^3+(-6*x^3*log(x)-6*x^3*exp(25)+12*x
^4+6*x^3-12*x^2)*exp(-1/2*x*log(x)-1/2*x*exp(25)+1/2*x^2+x)^2+(-2*x^4*log(x)-2*x^4*exp(25)+4*x^5+2*x^4-4*x^3)*
exp(-1/2*x*log(x)-1/2*x*exp(25)+1/2*x^2+x)-x^5)/x^5,x, algorithm="giac")

[Out]

-(x^5 - 4*x^3*e^(1/2*x^2 - 1/2*x*e^25 - 1/2*x*log(x) + x) - 6*x^2*e^(x^2 - x*e^25 - x*log(x) + 2*x) - 4*x*e^(3
/2*x^2 - 3/2*x*e^25 - 3/2*x*log(x) + 3*x) - e^(2*x^2 - 2*x*e^25 - 2*x*log(x) + 4*x))/x^4

________________________________________________________________________________________

maple [B]  time = 0.14, size = 94, normalized size = 3.03




method result size



risch x+x2xe2x(e25x2)x4+4x3x2e3x(e25x2)2x3+6xxex(e25x2)x2+4xx2ex(e25x2)2x 94



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-2*x*ln(x)-2*x*exp(25)+4*x^2+2*x-4)*exp(-1/2*x*ln(x)-1/2*x*exp(25)+1/2*x^2+x)^4+(-6*x^2*ln(x)-6*x^2*exp(
25)+12*x^3+6*x^2-12*x)*exp(-1/2*x*ln(x)-1/2*x*exp(25)+1/2*x^2+x)^3+(-6*x^3*ln(x)-6*x^3*exp(25)+12*x^4+6*x^3-12
*x^2)*exp(-1/2*x*ln(x)-1/2*x*exp(25)+1/2*x^2+x)^2+(-2*x^4*ln(x)-2*x^4*exp(25)+4*x^5+2*x^4-4*x^3)*exp(-1/2*x*ln
(x)-1/2*x*exp(25)+1/2*x^2+x)-x^5)/x^5,x,method=_RETURNVERBOSE)

[Out]

-x+1/x^4*(x^(-1/2*x))^4*exp(-2*x*(exp(25)-x-2))+4/x^3*(x^(-1/2*x))^3*exp(-3/2*x*(exp(25)-x-2))+6/x^2*(x^(-1/2*
x))^2*exp(-x*(exp(25)-x-2))+4/x*x^(-1/2*x)*exp(-1/2*x*(exp(25)-x-2))

________________________________________________________________________________________

maxima [B]  time = 0.46, size = 99, normalized size = 3.19 x+4x3e(12x212xe25+32xlog(x)+x)+6x2e(x2xe25+xlog(x)+2x)+4xe(32x232xe25+12xlog(x)+3x)+e(2x22xe25+4x)x4x2x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*x*log(x)-2*x*exp(25)+4*x^2+2*x-4)*exp(-1/2*x*log(x)-1/2*x*exp(25)+1/2*x^2+x)^4+(-6*x^2*log(x)-6
*x^2*exp(25)+12*x^3+6*x^2-12*x)*exp(-1/2*x*log(x)-1/2*x*exp(25)+1/2*x^2+x)^3+(-6*x^3*log(x)-6*x^3*exp(25)+12*x
^4+6*x^3-12*x^2)*exp(-1/2*x*log(x)-1/2*x*exp(25)+1/2*x^2+x)^2+(-2*x^4*log(x)-2*x^4*exp(25)+4*x^5+2*x^4-4*x^3)*
exp(-1/2*x*log(x)-1/2*x*exp(25)+1/2*x^2+x)-x^5)/x^5,x, algorithm="maxima")

[Out]

-x + (4*x^3*e^(1/2*x^2 - 1/2*x*e^25 + 3/2*x*log(x) + x) + 6*x^2*e^(x^2 - x*e^25 + x*log(x) + 2*x) + 4*x*e^(3/2
*x^2 - 3/2*x*e^25 + 1/2*x*log(x) + 3*x) + e^(2*x^2 - 2*x*e^25 + 4*x))/(x^4*x^(2*x))

________________________________________________________________________________________

mupad [B]  time = 3.73, size = 101, normalized size = 3.26 4e3x3xe2523xln(x)2+3x22x3x+4exxe252xln(x)2+x22x+6e2xxe25+x2xxx2+e4x2xe25+2x2x2xx4

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(3*x - (3*x*exp(25))/2 - (3*x*log(x))/2 + (3*x^2)/2)*(12*x + 6*x^2*log(x) + 6*x^2*exp(25) - 6*x^2 - 1
2*x^3) + exp(x - (x*exp(25))/2 - (x*log(x))/2 + x^2/2)*(2*x^4*log(x) + 2*x^4*exp(25) + 4*x^3 - 2*x^4 - 4*x^5)
+ exp(2*x - x*exp(25) - x*log(x) + x^2)*(6*x^3*log(x) + 6*x^3*exp(25) + 12*x^2 - 6*x^3 - 12*x^4) + exp(4*x - 2
*x*exp(25) - 2*x*log(x) + 2*x^2)*(2*x*exp(25) - 2*x + 2*x*log(x) - 4*x^2 + 4) + x^5)/x^5,x)

[Out]

(4*exp(3*x - (3*x*exp(25))/2 - (3*x*log(x))/2 + (3*x^2)/2))/x^3 - x + (4*exp(x - (x*exp(25))/2 - (x*log(x))/2
+ x^2/2))/x + (6*exp(2*x - x*exp(25) + x^2))/(x^x*x^2) + exp(4*x - 2*x*exp(25) + 2*x^2)/(x^(2*x)*x^4)

________________________________________________________________________________________

sympy [B]  time = 0.50, size = 116, normalized size = 3.74 x+4x9ex22xlog(x)2xe252+x+6x8ex2xlog(x)xe25+2x+4x7e3x223xlog(x)23xe252+3x+x6e2x22xlog(x)2xe25+4xx10

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*x*ln(x)-2*x*exp(25)+4*x**2+2*x-4)*exp(-1/2*x*ln(x)-1/2*x*exp(25)+1/2*x**2+x)**4+(-6*x**2*ln(x)-
6*x**2*exp(25)+12*x**3+6*x**2-12*x)*exp(-1/2*x*ln(x)-1/2*x*exp(25)+1/2*x**2+x)**3+(-6*x**3*ln(x)-6*x**3*exp(25
)+12*x**4+6*x**3-12*x**2)*exp(-1/2*x*ln(x)-1/2*x*exp(25)+1/2*x**2+x)**2+(-2*x**4*ln(x)-2*x**4*exp(25)+4*x**5+2
*x**4-4*x**3)*exp(-1/2*x*ln(x)-1/2*x*exp(25)+1/2*x**2+x)-x**5)/x**5,x)

[Out]

-x + (4*x**9*exp(x**2/2 - x*log(x)/2 - x*exp(25)/2 + x) + 6*x**8*exp(x**2 - x*log(x) - x*exp(25) + 2*x) + 4*x*
*7*exp(3*x**2/2 - 3*x*log(x)/2 - 3*x*exp(25)/2 + 3*x) + x**6*exp(2*x**2 - 2*x*log(x) - 2*x*exp(25) + 4*x))/x**
10

________________________________________________________________________________________