3.41.14 1441e1441(441+42x+x2)(42+2x)dx

Optimal. Leaf size=11 e(1+x21)2

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 11, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 23, number of rulesintegrand size = 0.130, Rules used = {12, 2227, 2209} e1441(x+21)2

Antiderivative was successfully verified.

[In]

Int[(E^((441 + 42*x + x^2)/441)*(42 + 2*x))/441,x]

[Out]

E^((21 + x)^2/441)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2209

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[((e + f*x)^n*
F^(a + b*(c + d*x)^n))/(b*f*n*(c + d*x)^n*Log[F]), x] /; FreeQ[{F, a, b, c, d, e, f, n}, x] && EqQ[m, n - 1] &
& EqQ[d*e - c*f, 0]

Rule 2227

Int[(u_.)*(F_)^((a_.) + (b_.)*(v_)), x_Symbol] :> Int[u*F^(a + b*NormalizePowerOfLinear[v, x]), x] /; FreeQ[{F
, a, b}, x] && PolynomialQ[u, x] && PowerOfLinearQ[v, x] &&  !PowerOfLinearMatchQ[v, x]

Rubi steps

integral=1441e1441(441+42x+x2)(42+2x)dx=1441e1441(21+x)2(42+2x)dx=e1441(21+x)2

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 11, normalized size = 1.00 e1441(21+x)2

Antiderivative was successfully verified.

[In]

Integrate[(E^((441 + 42*x + x^2)/441)*(42 + 2*x))/441,x]

[Out]

E^((21 + x)^2/441)

________________________________________________________________________________________

fricas [A]  time = 0.81, size = 11, normalized size = 1.00 e(1441x2+221x+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/441*(2*x+42)*exp(1/441*x^2+2/21*x+1),x, algorithm="fricas")

[Out]

e^(1/441*x^2 + 2/21*x + 1)

________________________________________________________________________________________

giac [A]  time = 0.22, size = 11, normalized size = 1.00 e(1441x2+221x+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/441*(2*x+42)*exp(1/441*x^2+2/21*x+1),x, algorithm="giac")

[Out]

e^(1/441*x^2 + 2/21*x + 1)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 9, normalized size = 0.82




method result size



risch e(x+21)2441 9
gosper e1441x2+221x+1 12
default e1441x2+221x+1 12
norman e1441x2+221x+1 12



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/441*(2*x+42)*exp(1/441*x^2+2/21*x+1),x,method=_RETURNVERBOSE)

[Out]

exp(1/441*(x+21)^2)

________________________________________________________________________________________

maxima [A]  time = 0.37, size = 11, normalized size = 1.00 e(1441x2+221x+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/441*(2*x+42)*exp(1/441*x^2+2/21*x+1),x, algorithm="maxima")

[Out]

e^(1/441*x^2 + 2/21*x + 1)

________________________________________________________________________________________

mupad [B]  time = 0.20, size = 13, normalized size = 1.18 e2x21eex2441

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp((2*x)/21 + x^2/441 + 1)*(2*x + 42))/441,x)

[Out]

exp((2*x)/21)*exp(1)*exp(x^2/441)

________________________________________________________________________________________

sympy [A]  time = 0.09, size = 12, normalized size = 1.09 ex2441+2x21+1

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/441*(2*x+42)*exp(1/441*x**2+2/21*x+1),x)

[Out]

exp(x**2/441 + 2*x/21 + 1)

________________________________________________________________________________________