Optimal. Leaf size=25 \[ 2+\frac {x \log (16+x)}{-e^{e^4+x}+2 x+\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 7.35, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-e^{e^4+x} x+2 x^2+x \log (x)+\left (-16-x+e^{e^4+x} \left (-16+15 x+x^2\right )+(16+x) \log (x)\right ) \log (16+x)}{64 x^2+4 x^3+e^{2 e^4+2 x} (16+x)+e^{e^4+x} \left (-64 x-4 x^2\right )+\left (e^{e^4+x} (-32-2 x)+64 x+4 x^2\right ) \log (x)+(16+x) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-\left (\left (e^{e^4+x}-2 x\right ) x\right )+\left (-1+e^{e^4+x} (-1+x)\right ) (16+x) \log (16+x)+\log (x) (x+(16+x) \log (16+x))}{(16+x) \left (e^{e^4+x}-2 x-\log (x)\right )^2} \, dx\\ &=\int \left (\frac {\left (-1-2 x+2 x^2+x \log (x)\right ) \log (16+x)}{\left (e^{e^4+x}-2 x-\log (x)\right )^2}-\frac {-x-16 \log (16+x)+15 x \log (16+x)+x^2 \log (16+x)}{(16+x) \left (-e^{e^4+x}+2 x+\log (x)\right )}\right ) \, dx\\ &=\int \frac {\left (-1-2 x+2 x^2+x \log (x)\right ) \log (16+x)}{\left (e^{e^4+x}-2 x-\log (x)\right )^2} \, dx-\int \frac {-x-16 \log (16+x)+15 x \log (16+x)+x^2 \log (16+x)}{(16+x) \left (-e^{e^4+x}+2 x+\log (x)\right )} \, dx\\ &=\int \left (-\frac {\log (16+x)}{\left (e^{e^4+x}-2 x-\log (x)\right )^2}-\frac {2 x \log (16+x)}{\left (-e^{e^4+x}+2 x+\log (x)\right )^2}+\frac {2 x^2 \log (16+x)}{\left (-e^{e^4+x}+2 x+\log (x)\right )^2}+\frac {x \log (x) \log (16+x)}{\left (-e^{e^4+x}+2 x+\log (x)\right )^2}\right ) \, dx-\int \left (-\frac {x}{(16+x) \left (-e^{e^4+x}+2 x+\log (x)\right )}-\frac {16 \log (16+x)}{(16+x) \left (-e^{e^4+x}+2 x+\log (x)\right )}+\frac {15 x \log (16+x)}{(16+x) \left (-e^{e^4+x}+2 x+\log (x)\right )}+\frac {x^2 \log (16+x)}{(16+x) \left (-e^{e^4+x}+2 x+\log (x)\right )}\right ) \, dx\\ &=-\left (2 \int \frac {x \log (16+x)}{\left (-e^{e^4+x}+2 x+\log (x)\right )^2} \, dx\right )+2 \int \frac {x^2 \log (16+x)}{\left (-e^{e^4+x}+2 x+\log (x)\right )^2} \, dx-15 \int \frac {x \log (16+x)}{(16+x) \left (-e^{e^4+x}+2 x+\log (x)\right )} \, dx+16 \int \frac {\log (16+x)}{(16+x) \left (-e^{e^4+x}+2 x+\log (x)\right )} \, dx+\int \frac {x}{(16+x) \left (-e^{e^4+x}+2 x+\log (x)\right )} \, dx-\int \frac {\log (16+x)}{\left (e^{e^4+x}-2 x-\log (x)\right )^2} \, dx+\int \frac {x \log (x) \log (16+x)}{\left (-e^{e^4+x}+2 x+\log (x)\right )^2} \, dx-\int \frac {x^2 \log (16+x)}{(16+x) \left (-e^{e^4+x}+2 x+\log (x)\right )} \, dx\\ &=-\left (2 \int \frac {x \log (16+x)}{\left (-e^{e^4+x}+2 x+\log (x)\right )^2} \, dx\right )+2 \int \frac {x^2 \log (16+x)}{\left (-e^{e^4+x}+2 x+\log (x)\right )^2} \, dx-15 \int \left (-\frac {\log (16+x)}{e^{e^4+x}-2 x-\log (x)}-\frac {16 \log (16+x)}{(16+x) \left (-e^{e^4+x}+2 x+\log (x)\right )}\right ) \, dx+16 \int \frac {\log (16+x)}{(16+x) \left (-e^{e^4+x}+2 x+\log (x)\right )} \, dx+\int \left (-\frac {1}{e^{e^4+x}-2 x-\log (x)}-\frac {16}{(16+x) \left (-e^{e^4+x}+2 x+\log (x)\right )}\right ) \, dx-\int \frac {\log (16+x)}{\left (e^{e^4+x}-2 x-\log (x)\right )^2} \, dx+\int \frac {x \log (x) \log (16+x)}{\left (-e^{e^4+x}+2 x+\log (x)\right )^2} \, dx-\int \left (\frac {16 \log (16+x)}{e^{e^4+x}-2 x-\log (x)}+\frac {x \log (16+x)}{-e^{e^4+x}+2 x+\log (x)}+\frac {256 \log (16+x)}{(16+x) \left (-e^{e^4+x}+2 x+\log (x)\right )}\right ) \, dx\\ &=-\left (2 \int \frac {x \log (16+x)}{\left (-e^{e^4+x}+2 x+\log (x)\right )^2} \, dx\right )+2 \int \frac {x^2 \log (16+x)}{\left (-e^{e^4+x}+2 x+\log (x)\right )^2} \, dx+15 \int \frac {\log (16+x)}{e^{e^4+x}-2 x-\log (x)} \, dx-16 \int \frac {1}{(16+x) \left (-e^{e^4+x}+2 x+\log (x)\right )} \, dx-16 \int \frac {\log (16+x)}{e^{e^4+x}-2 x-\log (x)} \, dx+16 \int \frac {\log (16+x)}{(16+x) \left (-e^{e^4+x}+2 x+\log (x)\right )} \, dx+240 \int \frac {\log (16+x)}{(16+x) \left (-e^{e^4+x}+2 x+\log (x)\right )} \, dx-256 \int \frac {\log (16+x)}{(16+x) \left (-e^{e^4+x}+2 x+\log (x)\right )} \, dx-\int \frac {1}{e^{e^4+x}-2 x-\log (x)} \, dx-\int \frac {\log (16+x)}{\left (e^{e^4+x}-2 x-\log (x)\right )^2} \, dx+\int \frac {x \log (x) \log (16+x)}{\left (-e^{e^4+x}+2 x+\log (x)\right )^2} \, dx-\int \frac {x \log (16+x)}{-e^{e^4+x}+2 x+\log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.85, size = 23, normalized size = 0.92 \begin {gather*} \frac {x \log (16+x)}{-e^{e^4+x}+2 x+\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 21, normalized size = 0.84 \begin {gather*} \frac {x \log \left (x + 16\right )}{2 \, x - e^{\left (x + e^{4}\right )} + \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 21, normalized size = 0.84 \begin {gather*} \frac {x \log \left (x + 16\right )}{2 \, x - e^{\left (x + e^{4}\right )} + \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 22, normalized size = 0.88
method | result | size |
risch | \(\frac {x \ln \left (x +16\right )}{2 x -{\mathrm e}^{x +{\mathrm e}^{4}}+\ln \relax (x )}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 21, normalized size = 0.84 \begin {gather*} \frac {x \log \left (x + 16\right )}{2 \, x - e^{\left (x + e^{4}\right )} + \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.32, size = 101, normalized size = 4.04 \begin {gather*} -\frac {30\,x^4\,\ln \left (x+16\right )-33\,x^3\,\ln \left (x+16\right )-16\,x^2\,\ln \left (x+16\right )+2\,x^5\,\ln \left (x+16\right )+\ln \relax (x)\,\left (16\,x^3\,\ln \left (x+16\right )+x^4\,\ln \left (x+16\right )\right )}{\left (x+16\right )\,\left (2\,x-{\mathrm {e}}^{x+{\mathrm {e}}^4}+\ln \relax (x)\right )\,\left (x-x^2\,\ln \relax (x)+2\,x^2-2\,x^3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 20, normalized size = 0.80 \begin {gather*} - \frac {x \log {\left (x + 16 \right )}}{- 2 x + e^{x + e^{4}} - \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________