3.41.18
Optimal. Leaf size=25
________________________________________________________________________________________
Rubi [F] time = 7.35, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(-(E^(E^4 + x)*x) + 2*x^2 + x*Log[x] + (-16 - x + E^(E^4 + x)*(-16 + 15*x + x^2) + (16 + x)*Log[x])*Log[16
+ x])/(64*x^2 + 4*x^3 + E^(2*E^4 + 2*x)*(16 + x) + E^(E^4 + x)*(-64*x - 4*x^2) + (E^(E^4 + x)*(-32 - 2*x) + 6
4*x + 4*x^2)*Log[x] + (16 + x)*Log[x]^2),x]
[Out]
-Defer[Int][(E^(E^4 + x) - 2*x - Log[x])^(-1), x] - 16*Defer[Int][1/((16 + x)*(-E^(E^4 + x) + 2*x + Log[x])),
x] - Defer[Int][Log[16 + x]/(E^(E^4 + x) - 2*x - Log[x])^2, x] - Defer[Int][Log[16 + x]/(E^(E^4 + x) - 2*x - L
og[x]), x] - 2*Defer[Int][(x*Log[16 + x])/(-E^(E^4 + x) + 2*x + Log[x])^2, x] + 2*Defer[Int][(x^2*Log[16 + x])
/(-E^(E^4 + x) + 2*x + Log[x])^2, x] + Defer[Int][(x*Log[x]*Log[16 + x])/(-E^(E^4 + x) + 2*x + Log[x])^2, x] -
Defer[Int][(x*Log[16 + x])/(-E^(E^4 + x) + 2*x + Log[x]), x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.85, size = 23, normalized size = 0.92
Antiderivative was successfully verified.
[In]
Integrate[(-(E^(E^4 + x)*x) + 2*x^2 + x*Log[x] + (-16 - x + E^(E^4 + x)*(-16 + 15*x + x^2) + (16 + x)*Log[x])*
Log[16 + x])/(64*x^2 + 4*x^3 + E^(2*E^4 + 2*x)*(16 + x) + E^(E^4 + x)*(-64*x - 4*x^2) + (E^(E^4 + x)*(-32 - 2*
x) + 64*x + 4*x^2)*Log[x] + (16 + x)*Log[x]^2),x]
[Out]
(x*Log[16 + x])/(-E^(E^4 + x) + 2*x + Log[x])
________________________________________________________________________________________
fricas [A] time = 0.65, size = 21, normalized size = 0.84
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((x+16)*log(x)+(x^2+15*x-16)*exp(x+exp(4))-x-16)*log(x+16)+x*log(x)-x*exp(x+exp(4))+2*x^2)/((x+16)*
log(x)^2+((-2*x-32)*exp(x+exp(4))+4*x^2+64*x)*log(x)+(x+16)*exp(x+exp(4))^2+(-4*x^2-64*x)*exp(x+exp(4))+4*x^3+
64*x^2),x, algorithm="fricas")
[Out]
x*log(x + 16)/(2*x - e^(x + e^4) + log(x))
________________________________________________________________________________________
giac [A] time = 0.18, size = 21, normalized size = 0.84
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((x+16)*log(x)+(x^2+15*x-16)*exp(x+exp(4))-x-16)*log(x+16)+x*log(x)-x*exp(x+exp(4))+2*x^2)/((x+16)*
log(x)^2+((-2*x-32)*exp(x+exp(4))+4*x^2+64*x)*log(x)+(x+16)*exp(x+exp(4))^2+(-4*x^2-64*x)*exp(x+exp(4))+4*x^3+
64*x^2),x, algorithm="giac")
[Out]
x*log(x + 16)/(2*x - e^(x + e^4) + log(x))
________________________________________________________________________________________
maple [A] time = 0.04, size = 22, normalized size = 0.88
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((x+16)*ln(x)+(x^2+15*x-16)*exp(x+exp(4))-x-16)*ln(x+16)+x*ln(x)-x*exp(x+exp(4))+2*x^2)/((x+16)*ln(x)^2+(
(-2*x-32)*exp(x+exp(4))+4*x^2+64*x)*ln(x)+(x+16)*exp(x+exp(4))^2+(-4*x^2-64*x)*exp(x+exp(4))+4*x^3+64*x^2),x,m
ethod=_RETURNVERBOSE)
[Out]
x*ln(x+16)/(2*x-exp(x+exp(4))+ln(x))
________________________________________________________________________________________
maxima [A] time = 0.45, size = 21, normalized size = 0.84
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((x+16)*log(x)+(x^2+15*x-16)*exp(x+exp(4))-x-16)*log(x+16)+x*log(x)-x*exp(x+exp(4))+2*x^2)/((x+16)*
log(x)^2+((-2*x-32)*exp(x+exp(4))+4*x^2+64*x)*log(x)+(x+16)*exp(x+exp(4))^2+(-4*x^2-64*x)*exp(x+exp(4))+4*x^3+
64*x^2),x, algorithm="maxima")
[Out]
x*log(x + 16)/(2*x - e^(x + e^4) + log(x))
________________________________________________________________________________________
mupad [B] time = 3.32, size = 101, normalized size = 4.04
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(x*exp(x + exp(4)) + log(x + 16)*(x - exp(x + exp(4))*(15*x + x^2 - 16) - log(x)*(x + 16) + 16) - x*log(x
) - 2*x^2)/(log(x)^2*(x + 16) - exp(x + exp(4))*(64*x + 4*x^2) + exp(2*x + 2*exp(4))*(x + 16) + 64*x^2 + 4*x^3
+ log(x)*(64*x - exp(x + exp(4))*(2*x + 32) + 4*x^2)),x)
[Out]
-(30*x^4*log(x + 16) - 33*x^3*log(x + 16) - 16*x^2*log(x + 16) + 2*x^5*log(x + 16) + log(x)*(16*x^3*log(x + 16
) + x^4*log(x + 16)))/((x + 16)*(2*x - exp(x + exp(4)) + log(x))*(x - x^2*log(x) + 2*x^2 - 2*x^3))
________________________________________________________________________________________
sympy [A] time = 0.36, size = 20, normalized size = 0.80
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((x+16)*ln(x)+(x**2+15*x-16)*exp(x+exp(4))-x-16)*ln(x+16)+x*ln(x)-x*exp(x+exp(4))+2*x**2)/((x+16)*l
n(x)**2+((-2*x-32)*exp(x+exp(4))+4*x**2+64*x)*ln(x)+(x+16)*exp(x+exp(4))**2+(-4*x**2-64*x)*exp(x+exp(4))+4*x**
3+64*x**2),x)
[Out]
-x*log(x + 16)/(-2*x + exp(x + exp(4)) - log(x))
________________________________________________________________________________________