3.41.18 ee4+xx+2x2+xlog(x)+(16x+ee4+x(16+15x+x2)+(16+x)log(x))log(16+x)64x2+4x3+e2e4+2x(16+x)+ee4+x(64x4x2)+(ee4+x(322x)+64x+4x2)log(x)+(16+x)log2(x)dx

Optimal. Leaf size=25 2+xlog(16+x)ee4+x+2x+log(x)

________________________________________________________________________________________

Rubi [F]  time = 7.35, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} ee4+xx+2x2+xlog(x)+(16x+ee4+x(16+15x+x2)+(16+x)log(x))log(16+x)64x2+4x3+e2e4+2x(16+x)+ee4+x(64x4x2)+(ee4+x(322x)+64x+4x2)log(x)+(16+x)log2(x)dx

Verification is not applicable to the result.

[In]

Int[(-(E^(E^4 + x)*x) + 2*x^2 + x*Log[x] + (-16 - x + E^(E^4 + x)*(-16 + 15*x + x^2) + (16 + x)*Log[x])*Log[16
 + x])/(64*x^2 + 4*x^3 + E^(2*E^4 + 2*x)*(16 + x) + E^(E^4 + x)*(-64*x - 4*x^2) + (E^(E^4 + x)*(-32 - 2*x) + 6
4*x + 4*x^2)*Log[x] + (16 + x)*Log[x]^2),x]

[Out]

-Defer[Int][(E^(E^4 + x) - 2*x - Log[x])^(-1), x] - 16*Defer[Int][1/((16 + x)*(-E^(E^4 + x) + 2*x + Log[x])),
x] - Defer[Int][Log[16 + x]/(E^(E^4 + x) - 2*x - Log[x])^2, x] - Defer[Int][Log[16 + x]/(E^(E^4 + x) - 2*x - L
og[x]), x] - 2*Defer[Int][(x*Log[16 + x])/(-E^(E^4 + x) + 2*x + Log[x])^2, x] + 2*Defer[Int][(x^2*Log[16 + x])
/(-E^(E^4 + x) + 2*x + Log[x])^2, x] + Defer[Int][(x*Log[x]*Log[16 + x])/(-E^(E^4 + x) + 2*x + Log[x])^2, x] -
 Defer[Int][(x*Log[16 + x])/(-E^(E^4 + x) + 2*x + Log[x]), x]

Rubi steps

integral=((ee4+x2x)x)+(1+ee4+x(1+x))(16+x)log(16+x)+log(x)(x+(16+x)log(16+x))(16+x)(ee4+x2xlog(x))2dx=((12x+2x2+xlog(x))log(16+x)(ee4+x2xlog(x))2x16log(16+x)+15xlog(16+x)+x2log(16+x)(16+x)(ee4+x+2x+log(x)))dx=(12x+2x2+xlog(x))log(16+x)(ee4+x2xlog(x))2dxx16log(16+x)+15xlog(16+x)+x2log(16+x)(16+x)(ee4+x+2x+log(x))dx=(log(16+x)(ee4+x2xlog(x))22xlog(16+x)(ee4+x+2x+log(x))2+2x2log(16+x)(ee4+x+2x+log(x))2+xlog(x)log(16+x)(ee4+x+2x+log(x))2)dx(x(16+x)(ee4+x+2x+log(x))16log(16+x)(16+x)(ee4+x+2x+log(x))+15xlog(16+x)(16+x)(ee4+x+2x+log(x))+x2log(16+x)(16+x)(ee4+x+2x+log(x)))dx=(2xlog(16+x)(ee4+x+2x+log(x))2dx)+2x2log(16+x)(ee4+x+2x+log(x))2dx15xlog(16+x)(16+x)(ee4+x+2x+log(x))dx+16log(16+x)(16+x)(ee4+x+2x+log(x))dx+x(16+x)(ee4+x+2x+log(x))dxlog(16+x)(ee4+x2xlog(x))2dx+xlog(x)log(16+x)(ee4+x+2x+log(x))2dxx2log(16+x)(16+x)(ee4+x+2x+log(x))dx=(2xlog(16+x)(ee4+x+2x+log(x))2dx)+2x2log(16+x)(ee4+x+2x+log(x))2dx15(log(16+x)ee4+x2xlog(x)16log(16+x)(16+x)(ee4+x+2x+log(x)))dx+16log(16+x)(16+x)(ee4+x+2x+log(x))dx+(1ee4+x2xlog(x)16(16+x)(ee4+x+2x+log(x)))dxlog(16+x)(ee4+x2xlog(x))2dx+xlog(x)log(16+x)(ee4+x+2x+log(x))2dx(16log(16+x)ee4+x2xlog(x)+xlog(16+x)ee4+x+2x+log(x)+256log(16+x)(16+x)(ee4+x+2x+log(x)))dx=(2xlog(16+x)(ee4+x+2x+log(x))2dx)+2x2log(16+x)(ee4+x+2x+log(x))2dx+15log(16+x)ee4+x2xlog(x)dx161(16+x)(ee4+x+2x+log(x))dx16log(16+x)ee4+x2xlog(x)dx+16log(16+x)(16+x)(ee4+x+2x+log(x))dx+240log(16+x)(16+x)(ee4+x+2x+log(x))dx256log(16+x)(16+x)(ee4+x+2x+log(x))dx1ee4+x2xlog(x)dxlog(16+x)(ee4+x2xlog(x))2dx+xlog(x)log(16+x)(ee4+x+2x+log(x))2dxxlog(16+x)ee4+x+2x+log(x)dx

________________________________________________________________________________________

Mathematica [A]  time = 0.85, size = 23, normalized size = 0.92 xlog(16+x)ee4+x+2x+log(x)

Antiderivative was successfully verified.

[In]

Integrate[(-(E^(E^4 + x)*x) + 2*x^2 + x*Log[x] + (-16 - x + E^(E^4 + x)*(-16 + 15*x + x^2) + (16 + x)*Log[x])*
Log[16 + x])/(64*x^2 + 4*x^3 + E^(2*E^4 + 2*x)*(16 + x) + E^(E^4 + x)*(-64*x - 4*x^2) + (E^(E^4 + x)*(-32 - 2*
x) + 64*x + 4*x^2)*Log[x] + (16 + x)*Log[x]^2),x]

[Out]

(x*Log[16 + x])/(-E^(E^4 + x) + 2*x + Log[x])

________________________________________________________________________________________

fricas [A]  time = 0.65, size = 21, normalized size = 0.84 xlog(x+16)2xe(x+e4)+log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((x+16)*log(x)+(x^2+15*x-16)*exp(x+exp(4))-x-16)*log(x+16)+x*log(x)-x*exp(x+exp(4))+2*x^2)/((x+16)*
log(x)^2+((-2*x-32)*exp(x+exp(4))+4*x^2+64*x)*log(x)+(x+16)*exp(x+exp(4))^2+(-4*x^2-64*x)*exp(x+exp(4))+4*x^3+
64*x^2),x, algorithm="fricas")

[Out]

x*log(x + 16)/(2*x - e^(x + e^4) + log(x))

________________________________________________________________________________________

giac [A]  time = 0.18, size = 21, normalized size = 0.84 xlog(x+16)2xe(x+e4)+log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((x+16)*log(x)+(x^2+15*x-16)*exp(x+exp(4))-x-16)*log(x+16)+x*log(x)-x*exp(x+exp(4))+2*x^2)/((x+16)*
log(x)^2+((-2*x-32)*exp(x+exp(4))+4*x^2+64*x)*log(x)+(x+16)*exp(x+exp(4))^2+(-4*x^2-64*x)*exp(x+exp(4))+4*x^3+
64*x^2),x, algorithm="giac")

[Out]

x*log(x + 16)/(2*x - e^(x + e^4) + log(x))

________________________________________________________________________________________

maple [A]  time = 0.04, size = 22, normalized size = 0.88




method result size



risch xln(x+16)2xex+e4+ln(x) 22



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((x+16)*ln(x)+(x^2+15*x-16)*exp(x+exp(4))-x-16)*ln(x+16)+x*ln(x)-x*exp(x+exp(4))+2*x^2)/((x+16)*ln(x)^2+(
(-2*x-32)*exp(x+exp(4))+4*x^2+64*x)*ln(x)+(x+16)*exp(x+exp(4))^2+(-4*x^2-64*x)*exp(x+exp(4))+4*x^3+64*x^2),x,m
ethod=_RETURNVERBOSE)

[Out]

x*ln(x+16)/(2*x-exp(x+exp(4))+ln(x))

________________________________________________________________________________________

maxima [A]  time = 0.45, size = 21, normalized size = 0.84 xlog(x+16)2xe(x+e4)+log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((x+16)*log(x)+(x^2+15*x-16)*exp(x+exp(4))-x-16)*log(x+16)+x*log(x)-x*exp(x+exp(4))+2*x^2)/((x+16)*
log(x)^2+((-2*x-32)*exp(x+exp(4))+4*x^2+64*x)*log(x)+(x+16)*exp(x+exp(4))^2+(-4*x^2-64*x)*exp(x+exp(4))+4*x^3+
64*x^2),x, algorithm="maxima")

[Out]

x*log(x + 16)/(2*x - e^(x + e^4) + log(x))

________________________________________________________________________________________

mupad [B]  time = 3.32, size = 101, normalized size = 4.04 30x4ln(x+16)33x3ln(x+16)16x2ln(x+16)+2x5ln(x+16)+ln(x)(16x3ln(x+16)+x4ln(x+16))(x+16)(2xex+e4+ln(x))(xx2ln(x)+2x22x3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(x*exp(x + exp(4)) + log(x + 16)*(x - exp(x + exp(4))*(15*x + x^2 - 16) - log(x)*(x + 16) + 16) - x*log(x
) - 2*x^2)/(log(x)^2*(x + 16) - exp(x + exp(4))*(64*x + 4*x^2) + exp(2*x + 2*exp(4))*(x + 16) + 64*x^2 + 4*x^3
 + log(x)*(64*x - exp(x + exp(4))*(2*x + 32) + 4*x^2)),x)

[Out]

-(30*x^4*log(x + 16) - 33*x^3*log(x + 16) - 16*x^2*log(x + 16) + 2*x^5*log(x + 16) + log(x)*(16*x^3*log(x + 16
) + x^4*log(x + 16)))/((x + 16)*(2*x - exp(x + exp(4)) + log(x))*(x - x^2*log(x) + 2*x^2 - 2*x^3))

________________________________________________________________________________________

sympy [A]  time = 0.36, size = 20, normalized size = 0.80 xlog(x+16)2x+ex+e4log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((x+16)*ln(x)+(x**2+15*x-16)*exp(x+exp(4))-x-16)*ln(x+16)+x*ln(x)-x*exp(x+exp(4))+2*x**2)/((x+16)*l
n(x)**2+((-2*x-32)*exp(x+exp(4))+4*x**2+64*x)*ln(x)+(x+16)*exp(x+exp(4))**2+(-4*x**2-64*x)*exp(x+exp(4))+4*x**
3+64*x**2),x)

[Out]

-x*log(x + 16)/(-2*x + exp(x + exp(4)) - log(x))

________________________________________________________________________________________