3.41.19 2+4ex+e1+x(2+4ex)+(4exx+2e1+xx)log(x)x+4exx+4e2xxdx

Optimal. Leaf size=24 (x+e1+xx)log(x)(12+ex)x

________________________________________________________________________________________

Rubi [F]  time = 0.85, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 2+4ex+e1+x(2+4ex)+(4exx+2e1+xx)log(x)x+4exx+4e2xxdx

Verification is not applicable to the result.

[In]

Int[(2 + 4*E^x + E^(1 + x)*(2 + 4*E^x) + (-4*E^x*x + 2*E^(1 + x)*x)*Log[x])/(x + 4*E^x*x + 4*E^(2*x)*x),x]

[Out]

E*Log[x] + (2 - E)*Defer[Int][1/((1 + 2*E^x)*x), x] + (2 - E)*Defer[Int][Log[x]/(1 + 2*E^x)^2, x] - (2 - E)*De
fer[Int][Log[x]/(1 + 2*E^x), x]

Rubi steps

integral=2((1+2ex)(1+e1+x)+(2+e)exxlog(x))(1+2ex)2xdx=2(1+2ex)(1+e1+x)+(2+e)exxlog(x)(1+2ex)2xdx=2(e2x(2+e)log(x)2(1+2ex)2+(2+e)(1+xlog(x))2(1+2ex)x)dx=elog(x)+(2e)log(x)(1+2ex)2dx+(2+e)1+xlog(x)(1+2ex)xdx=elog(x)+(2e)log(x)(1+2ex)2dx+(2+e)(1(1+2ex)x+log(x)1+2ex)dx=elog(x)+(2e)1(1+2ex)xdx+(2e)log(x)(1+2ex)2dx+(2+e)log(x)1+2exdx

________________________________________________________________________________________

Mathematica [A]  time = 0.20, size = 20, normalized size = 0.83 2(1+e1+x)log(x)1+2ex

Antiderivative was successfully verified.

[In]

Integrate[(2 + 4*E^x + E^(1 + x)*(2 + 4*E^x) + (-4*E^x*x + 2*E^(1 + x)*x)*Log[x])/(x + 4*E^x*x + 4*E^(2*x)*x),
x]

[Out]

(2*(1 + E^(1 + x))*Log[x])/(1 + 2*E^x)

________________________________________________________________________________________

fricas [A]  time = 0.51, size = 22, normalized size = 0.92 2(e+e(x+2))log(x)e+2e(x+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x*exp(x+1)-4*exp(x)*x)*log(x)+(4*exp(x)+2)*exp(x+1)+4*exp(x)+2)/(4*x*exp(x)^2+4*exp(x)*x+x),x, a
lgorithm="fricas")

[Out]

2*(e + e^(x + 2))*log(x)/(e + 2*e^(x + 1))

________________________________________________________________________________________

giac [A]  time = 0.15, size = 20, normalized size = 0.83 2(e(x+1)log(x)+log(x))2ex+1

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x*exp(x+1)-4*exp(x)*x)*log(x)+(4*exp(x)+2)*exp(x+1)+4*exp(x)+2)/(4*x*exp(x)^2+4*exp(x)*x+x),x, a
lgorithm="giac")

[Out]

2*(e^(x + 1)*log(x) + log(x))/(2*e^x + 1)

________________________________________________________________________________________

maple [A]  time = 0.11, size = 23, normalized size = 0.96




method result size



norman 2ln(x)+2eexln(x)2ex+1 23
risch (e2)ln(x)2ex+1+eln(x) 23



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((2*x*exp(x+1)-4*exp(x)*x)*ln(x)+(4*exp(x)+2)*exp(x+1)+4*exp(x)+2)/(4*x*exp(x)^2+4*exp(x)*x+x),x,method=_R
ETURNVERBOSE)

[Out]

(2*ln(x)+2*exp(1)*exp(x)*ln(x))/(2*exp(x)+1)

________________________________________________________________________________________

maxima [A]  time = 0.42, size = 22, normalized size = 0.92 elog(x)(e2)log(x)2ex+1

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x*exp(x+1)-4*exp(x)*x)*log(x)+(4*exp(x)+2)*exp(x+1)+4*exp(x)+2)/(4*x*exp(x)^2+4*exp(x)*x+x),x, a
lgorithm="maxima")

[Out]

e*log(x) - (e - 2)*log(x)/(2*e^x + 1)

________________________________________________________________________________________

mupad [B]  time = 3.19, size = 18, normalized size = 0.75 2ln(x)(ex+1+1)2ex+1

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((4*exp(x) + exp(x + 1)*(4*exp(x) + 2) + log(x)*(2*x*exp(x + 1) - 4*x*exp(x)) + 2)/(x + 4*x*exp(2*x) + 4*x*
exp(x)),x)

[Out]

(2*log(x)*(exp(x + 1) + 1))/(2*exp(x) + 1)

________________________________________________________________________________________

sympy [A]  time = 0.25, size = 24, normalized size = 1.00 elog(x)+2log(x)2ex+1+elog(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x*exp(x+1)-4*exp(x)*x)*ln(x)+(4*exp(x)+2)*exp(x+1)+4*exp(x)+2)/(4*x*exp(x)**2+4*exp(x)*x+x),x)

[Out]

(-E*log(x) + 2*log(x))/(2*exp(x) + 1) + E*log(x)

________________________________________________________________________________________