3.41.22 318x+e2511x+x2(11x2x2)18xlog(x)xdx

Optimal. Leaf size=22 e(5+x)2x+(318x)log(x)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 22, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 4, integrand size = 34, number of rulesintegrand size = 0.118, Rules used = {14, 2236, 43, 2295} ex211x+2518xlog(x)+3log(x)

Antiderivative was successfully verified.

[In]

Int[(3 - 18*x + E^(25 - 11*x + x^2)*(11*x - 2*x^2) - 18*x*Log[x])/x,x]

[Out]

-E^(25 - 11*x + x^2) + 3*Log[x] - 18*x*Log[x]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 2236

Int[(F_)^((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)*((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[(e*F^(a + b*x + c*x^2))/(
2*c*Log[F]), x] /; FreeQ[{F, a, b, c, d, e}, x] && EqQ[b*e - 2*c*d, 0]

Rule 2295

Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]

Rubi steps

integral=(e2511x+x2(11+2x)3(1+6x+6xlog(x))x)dx=(31+6x+6xlog(x)xdx)e2511x+x2(11+2x)dx=e2511x+x23(1+6xx+6log(x))dx=e2511x+x231+6xxdx18log(x)dx=e2511x+x2+18x18xlog(x)3(61x)dx=e2511x+x2+3log(x)18xlog(x)

________________________________________________________________________________________

Mathematica [A]  time = 0.08, size = 22, normalized size = 1.00 e2511x+x2+3log(x)18xlog(x)

Antiderivative was successfully verified.

[In]

Integrate[(3 - 18*x + E^(25 - 11*x + x^2)*(11*x - 2*x^2) - 18*x*Log[x])/x,x]

[Out]

-E^(25 - 11*x + x^2) + 3*Log[x] - 18*x*Log[x]

________________________________________________________________________________________

fricas [A]  time = 0.88, size = 21, normalized size = 0.95 3(6x1)log(x)e(x211x+25)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-18*x*log(x)+(-2*x^2+11*x)*exp(x^2-11*x+25)-18*x+3)/x,x, algorithm="fricas")

[Out]

-3*(6*x - 1)*log(x) - e^(x^2 - 11*x + 25)

________________________________________________________________________________________

giac [A]  time = 0.20, size = 21, normalized size = 0.95 18xlog(x)e(x211x+25)+3log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-18*x*log(x)+(-2*x^2+11*x)*exp(x^2-11*x+25)-18*x+3)/x,x, algorithm="giac")

[Out]

-18*x*log(x) - e^(x^2 - 11*x + 25) + 3*log(x)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 22, normalized size = 1.00




method result size



default ex211x+25+3ln(x)18xln(x) 22
norman ex211x+25+3ln(x)18xln(x) 22
risch ex211x+25+3ln(x)18xln(x) 22



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-18*x*ln(x)+(-2*x^2+11*x)*exp(x^2-11*x+25)-18*x+3)/x,x,method=_RETURNVERBOSE)

[Out]

-exp(x^2-11*x+25)+3*ln(x)-18*x*ln(x)

________________________________________________________________________________________

maxima [C]  time = 0.38, size = 77, normalized size = 3.50 112iπerf(ix112i)e(214)12(11π(2x11)(erf(12(2x11)2)1)(2x11)2+2e(14(2x11)2))e(214)18xlog(x)+3log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-18*x*log(x)+(-2*x^2+11*x)*exp(x^2-11*x+25)-18*x+3)/x,x, algorithm="maxima")

[Out]

-11/2*I*sqrt(pi)*erf(I*x - 11/2*I)*e^(-21/4) - 1/2*(11*sqrt(pi)*(2*x - 11)*(erf(1/2*sqrt(-(2*x - 11)^2)) - 1)/
sqrt(-(2*x - 11)^2) + 2*e^(1/4*(2*x - 11)^2))*e^(-21/4) - 18*x*log(x) + 3*log(x)

________________________________________________________________________________________

mupad [B]  time = 3.05, size = 22, normalized size = 1.00 3ln(x)18xln(x)e11xex2e25

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(18*x - exp(x^2 - 11*x + 25)*(11*x - 2*x^2) + 18*x*log(x) - 3)/x,x)

[Out]

3*log(x) - 18*x*log(x) - exp(-11*x)*exp(x^2)*exp(25)

________________________________________________________________________________________

sympy [A]  time = 0.29, size = 20, normalized size = 0.91 18xlog(x)ex211x+25+3log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-18*x*ln(x)+(-2*x**2+11*x)*exp(x**2-11*x+25)-18*x+3)/x,x)

[Out]

-18*x*log(x) - exp(x**2 - 11*x + 25) + 3*log(x)

________________________________________________________________________________________