3.41.21 (6+2xx+x2)x+x2(3+3x5x2x3+(3+2x+7x2+2x3)log(6+2xx+x2))3+4x+x2dx

Optimal. Leaf size=22 (6+2xx(1+x))x+x2

________________________________________________________________________________________

Rubi [F]  time = 2.93, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} (6+2xx+x2)x+x2(3+3x5x2x3+(3+2x+7x2+2x3)log(6+2xx+x2))3+4x+x2dx

Verification is not applicable to the result.

[In]

Int[(((6 + 2*x)/(x + x^2))^(-x + x^2)*(3 + 3*x - 5*x^2 - x^3 + (-3 + 2*x + 7*x^2 + 2*x^3)*Log[(6 + 2*x)/(x + x
^2)]))/(3 + 4*x + x^2),x]

[Out]

-Defer[Int][((6 + 2*x)/(x*(1 + x)))^((-1 + x)*x), x] - Log[(2*(3 + x))/(x*(1 + x))]*Defer[Int][((6 + 2*x)/(x*(
1 + x)))^((-1 + x)*x), x] - 3*Defer[Int][((6 + 2*x)/(x*(1 + x)))^((-1 + x)*x)/(-2 - 2*x), x] - Defer[Int][x*((
6 + 2*x)/(x*(1 + x)))^((-1 + x)*x), x] + 2*Log[(2*(3 + x))/(x*(1 + x))]*Defer[Int][x*((6 + 2*x)/(x*(1 + x)))^(
(-1 + x)*x), x] - 7*Defer[Int][((6 + 2*x)/(x*(1 + x)))^((-1 + x)*x)/(2 + 2*x), x] + 24*Defer[Int][((6 + 2*x)/(
x*(1 + x)))^((-1 + x)*x)/(6 + 2*x), x] - Defer[Int][Defer[Int][((6 + 2*x)/(x*(1 + x)))^((-1 + x)*x), x]/(-3 -
x), x] - Defer[Int][Defer[Int][((6 + 2*x)/(x*(1 + x)))^((-1 + x)*x), x]/x, x] - Defer[Int][Defer[Int][((6 + 2*
x)/(x*(1 + x)))^((-1 + x)*x), x]/(1 + x), x] - 2*Defer[Int][Defer[Int][x*((6 + 2*x)/(x*(1 + x)))^((-1 + x)*x),
 x]/(-1 - x), x] + 2*Defer[Int][Defer[Int][x*((6 + 2*x)/(x*(1 + x)))^((-1 + x)*x), x]/x, x] - 2*Defer[Int][Def
er[Int][x*((6 + 2*x)/(x*(1 + x)))^((-1 + x)*x), x]/(3 + x), x]

Rubi steps

integral=(3(6+2xx(1+x))(1+x)x3+4x+x2+3x(6+2xx(1+x))(1+x)x3+4x+x25x2(6+2xx(1+x))(1+x)x3+4x+x2x3(6+2xx(1+x))(1+x)x3+4x+x2+(1+2x)(6+2xx(1+x))(1+x)xlog(6+2xx(1+x)))dx=3(6+2xx(1+x))(1+x)x3+4x+x2dx+3x(6+2xx(1+x))(1+x)x3+4x+x2dx5x2(6+2xx(1+x))(1+x)x3+4x+x2dxx3(6+2xx(1+x))(1+x)x3+4x+x2dx+(1+2x)(6+2xx(1+x))(1+x)xlog(6+2xx(1+x))dx=3((6+2xx(1+x))(1+x)x22x(6+2xx(1+x))(1+x)x6+2x)dx+3((6+2xx(1+x))(1+x)x2+2x+3(6+2xx(1+x))(1+x)x6+2x)dx5((6+2xx(1+x))(1+x)x(6+2xx(1+x))(1+x)x(3+4x)3+4x+x2)dxlog(6+2xx(1+x))(6+2xx(1+x))(1+x)xdx+(2log(6+2xx(1+x)))x(6+2xx(1+x))(1+x)xdx(4(6+2xx(1+x))(1+x)x+x(6+2xx(1+x))(1+x)x+(6+2xx(1+x))(1+x)x(12+13x)3+4x+x2)dx(3+6x+x2)((6+2xx+x2)(1+x)xdx2x(6+2xx+x2)(1+x)xdx)x(1+x)(3+x)dx=(3(6+2xx(1+x))(1+x)x22xdx)3(6+2xx(1+x))(1+x)x2+2xdx3(6+2xx(1+x))(1+x)x6+2xdx+4(6+2xx(1+x))(1+x)xdx5(6+2xx(1+x))(1+x)xdx+5(6+2xx(1+x))(1+x)x(3+4x)3+4x+x2dx+9(6+2xx(1+x))(1+x)x6+2xdxlog(6+2xx(1+x))(6+2xx(1+x))(1+x)xdx+(2log(6+2xx(1+x)))x(6+2xx(1+x))(1+x)xdxx(6+2xx(1+x))(1+x)xdx(6+2xx(1+x))(1+x)x(12+13x)3+4x+x2dx((3+6x+x2)(6+2xx(1+x))(1+x)xdxx(1+x)(3+x)+2(36xx2)x(6+2xx(1+x))(1+x)xdxx(1+x)(3+x))dx=(2(36xx2)x(6+2xx(1+x))(1+x)xdxx(1+x)(3+x)dx)3(6+2xx(1+x))(1+x)x22xdx3(6+2xx(1+x))(1+x)x2+2xdx3(6+2xx(1+x))(1+x)x6+2xdx+4(6+2xx(1+x))(1+x)xdx5(6+2xx(1+x))(1+x)xdx+5((6+2xx(1+x))(1+x)x2+2x+9(6+2xx(1+x))(1+x)x6+2x)dx+9(6+2xx(1+x))(1+x)x6+2xdxlog(6+2xx(1+x))(6+2xx(1+x))(1+x)xdx+(2log(6+2xx(1+x)))x(6+2xx(1+x))(1+x)xdxx(6+2xx(1+x))(1+x)xdx((6+2xx(1+x))(1+x)x2+2x+27(6+2xx(1+x))(1+x)x6+2x)dx(3+6x+x2)(6+2xx(1+x))(1+x)xdxx(1+x)(3+x)dx=(2(x(6+2xx(1+x))(1+x)xdx1xx(6+2xx(1+x))(1+x)xdxx+x(6+2xx(1+x))(1+x)xdx3+x)dx)3(6+2xx(1+x))(1+x)x22xdx3(6+2xx(1+x))(1+x)x2+2xdx3(6+2xx(1+x))(1+x)x6+2xdx+4(6+2xx(1+x))(1+x)xdx5(6+2xx(1+x))(1+x)xdx5(6+2xx(1+x))(1+x)x2+2xdx+9(6+2xx(1+x))(1+x)x6+2xdx27(6+2xx(1+x))(1+x)x6+2xdx+45(6+2xx(1+x))(1+x)x6+2xdxlog(6+2xx(1+x))(6+2xx(1+x))(1+x)xdx+(2log(6+2xx(1+x)))x(6+2xx(1+x))(1+x)xdxx(6+2xx(1+x))(1+x)xdx+(6+2xx(1+x))(1+x)x2+2xdx((6+2xx(1+x))(1+x)xdx3x+(6+2xx(1+x))(1+x)xdxx+(6+2xx(1+x))(1+x)xdx1+x)dx=(2x(6+2xx(1+x))(1+x)xdx1xdx)+2x(6+2xx(1+x))(1+x)xdxxdx2x(6+2xx(1+x))(1+x)xdx3+xdx3(6+2xx(1+x))(1+x)x22xdx3(6+2xx(1+x))(1+x)x2+2xdx3(6+2xx(1+x))(1+x)x6+2xdx+4(6+2xx(1+x))(1+x)xdx5(6+2xx(1+x))(1+x)xdx5(6+2xx(1+x))(1+x)x2+2xdx+9(6+2xx(1+x))(1+x)x6+2xdx27(6+2xx(1+x))(1+x)x6+2xdx+45(6+2xx(1+x))(1+x)x6+2xdxlog(6+2xx(1+x))(6+2xx(1+x))(1+x)xdx+(2log(6+2xx(1+x)))x(6+2xx(1+x))(1+x)xdxx(6+2xx(1+x))(1+x)xdx+(6+2xx(1+x))(1+x)x2+2xdx(6+2xx(1+x))(1+x)xdx3xdx(6+2xx(1+x))(1+x)xdxxdx(6+2xx(1+x))(1+x)xdx1+xdx

________________________________________________________________________________________

Mathematica [A]  time = 0.25, size = 19, normalized size = 0.86 (6+2xx+x2)(1+x)x

Antiderivative was successfully verified.

[In]

Integrate[(((6 + 2*x)/(x + x^2))^(-x + x^2)*(3 + 3*x - 5*x^2 - x^3 + (-3 + 2*x + 7*x^2 + 2*x^3)*Log[(6 + 2*x)/
(x + x^2)]))/(3 + 4*x + x^2),x]

[Out]

((6 + 2*x)/(x + x^2))^((-1 + x)*x)

________________________________________________________________________________________

fricas [A]  time = 0.61, size = 20, normalized size = 0.91 (2(x+3)x2+x)x2x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^3+7*x^2+2*x-3)*log((2*x+6)/(x^2+x))-x^3-5*x^2+3*x+3)*exp((x^2-x)*log((2*x+6)/(x^2+x)))/(x^2+4*
x+3),x, algorithm="fricas")

[Out]

(2*(x + 3)/(x^2 + x))^(x^2 - x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 (x3+5x2(2x3+7x2+2x3)log(2(x+3)x2+x)3x3)(2(x+3)x2+x)x2xx2+4x+3dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^3+7*x^2+2*x-3)*log((2*x+6)/(x^2+x))-x^3-5*x^2+3*x+3)*exp((x^2-x)*log((2*x+6)/(x^2+x)))/(x^2+4*
x+3),x, algorithm="giac")

[Out]

integrate(-(x^3 + 5*x^2 - (2*x^3 + 7*x^2 + 2*x - 3)*log(2*(x + 3)/(x^2 + x)) - 3*x - 3)*(2*(x + 3)/(x^2 + x))^
(x^2 - x)/(x^2 + 4*x + 3), x)

________________________________________________________________________________________

maple [A]  time = 0.21, size = 20, normalized size = 0.91




method result size



risch (2x+6x2+x)x(x1) 20
norman e(x2x)ln(2x+6x2+x) 24



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((2*x^3+7*x^2+2*x-3)*ln((2*x+6)/(x^2+x))-x^3-5*x^2+3*x+3)*exp((x^2-x)*ln((2*x+6)/(x^2+x)))/(x^2+4*x+3),x,m
ethod=_RETURNVERBOSE)

[Out]

((2*x+6)/(x^2+x))^(x*(x-1))

________________________________________________________________________________________

maxima [B]  time = 0.57, size = 54, normalized size = 2.45 e(x2log(2)+x2log(x+3)x2log(x+1)x2log(x)xlog(2)xlog(x+3)+xlog(x+1)+xlog(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^3+7*x^2+2*x-3)*log((2*x+6)/(x^2+x))-x^3-5*x^2+3*x+3)*exp((x^2-x)*log((2*x+6)/(x^2+x)))/(x^2+4*
x+3),x, algorithm="maxima")

[Out]

e^(x^2*log(2) + x^2*log(x + 3) - x^2*log(x + 1) - x^2*log(x) - x*log(2) - x*log(x + 3) + x*log(x + 1) + x*log(
x))

________________________________________________________________________________________

mupad [B]  time = 3.75, size = 21, normalized size = 0.95 (2x+6x2+x)x2x

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(-log((2*x + 6)/(x + x^2))*(x - x^2))*(3*x + log((2*x + 6)/(x + x^2))*(2*x + 7*x^2 + 2*x^3 - 3) - 5*x^
2 - x^3 + 3))/(4*x + x^2 + 3),x)

[Out]

((2*x + 6)/(x + x^2))^(x^2 - x)

________________________________________________________________________________________

sympy [A]  time = 0.60, size = 17, normalized size = 0.77 e(x2x)log(2x+6x2+x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x**3+7*x**2+2*x-3)*ln((2*x+6)/(x**2+x))-x**3-5*x**2+3*x+3)*exp((x**2-x)*ln((2*x+6)/(x**2+x)))/(x
**2+4*x+3),x)

[Out]

exp((x**2 - x)*log((2*x + 6)/(x**2 + x)))

________________________________________________________________________________________