3.41.27 e4+x(155x)2x4dx

Optimal. Leaf size=14 35e4+x2x3

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 12, normalized size of antiderivative = 0.86, number of steps used = 2, number of rules used = 2, integrand size = 17, number of rulesintegrand size = 0.118, Rules used = {12, 2197} 5ex42x3

Antiderivative was successfully verified.

[In]

Int[(E^(-4 + x)*(15 - 5*x))/(2*x^4),x]

[Out]

(-5*E^(-4 + x))/(2*x^3)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2197

Int[(F_)^((c_.)*(v_))*(u_)^(m_.)*(w_), x_Symbol] :> With[{b = Coefficient[v, x, 1], d = Coefficient[u, x, 0],
e = Coefficient[u, x, 1], f = Coefficient[w, x, 0], g = Coefficient[w, x, 1]}, Simp[(g*u^(m + 1)*F^(c*v))/(b*c
*e*Log[F]), x] /; EqQ[e*g*(m + 1) - b*c*(e*f - d*g)*Log[F], 0]] /; FreeQ[{F, c, m}, x] && LinearQ[{u, v, w}, x
]

Rubi steps

integral=12e4+x(155x)x4dx=5e4+x2x3

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 12, normalized size = 0.86 5e4+x2x3

Antiderivative was successfully verified.

[In]

Integrate[(E^(-4 + x)*(15 - 5*x))/(2*x^4),x]

[Out]

(-5*E^(-4 + x))/(2*x^3)

________________________________________________________________________________________

fricas [A]  time = 0.57, size = 9, normalized size = 0.64 5e(x4)2x3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*(15-5*x)/x^4/exp(-x+4),x, algorithm="fricas")

[Out]

-5/2*e^(x - 4)/x^3

________________________________________________________________________________________

giac [A]  time = 0.14, size = 9, normalized size = 0.64 5e(x4)2x3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*(15-5*x)/x^4/exp(-x+4),x, algorithm="giac")

[Out]

-5/2*e^(x - 4)/x^3

________________________________________________________________________________________

maple [A]  time = 0.09, size = 10, normalized size = 0.71




method result size



risch 5ex42x3 10
gosper 5ex42x3 14
norman 5ex42x3 14
derivativedivides 5ex4((x+4)2+9x8)12x3+5ex4((x+4)2+9x14)12x3 44
default 5ex4((x+4)2+9x8)12x3+5ex4((x+4)2+9x14)12x3 44
meijerg 15exe416+x(e123x3+e82x2+e42x+3536ln(x)6iπ6e12(22x3e12+36x2e8+36xe4+24)72x3+e12+xe4(4x2e8+4xe4+8)24x3+ln(xe4)6+\expIntegralEi(1,xe4)6)25ex12xe4(e82x2e4x114+ln(x)2+iπ2+e8(9x2e8+12xe4+6)12x2e8+xe4(3xe4+3)6x2ln(xe4)2\expIntegralEi(1,xe4)2)2 207



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/2*(15-5*x)/x^4/exp(-x+4),x,method=_RETURNVERBOSE)

[Out]

-5/2/x^3*exp(x-4)

________________________________________________________________________________________

maxima [C]  time = 0.38, size = 19, normalized size = 1.36 52e(4)Γ(2,x)+152e(4)Γ(3,x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*(15-5*x)/x^4/exp(-x+4),x, algorithm="maxima")

[Out]

5/2*e^(-4)*gamma(-2, -x) + 15/2*e^(-4)*gamma(-3, -x)

________________________________________________________________________________________

mupad [B]  time = 0.06, size = 9, normalized size = 0.64 5e4ex2x3

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(x - 4)*((5*x)/2 - 15/2))/x^4,x)

[Out]

-(5*exp(-4)*exp(x))/(2*x^3)

________________________________________________________________________________________

sympy [A]  time = 0.09, size = 12, normalized size = 0.86 5ex42x3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*(15-5*x)/x**4/exp(-x+4),x)

[Out]

-5*exp(x - 4)/(2*x**3)

________________________________________________________________________________________