3.41.28 3130x30x230log(x)30x2dx

Optimal. Leaf size=21 130xxlog(x)+log(x)x

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 21, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 3, integrand size = 21, number of rulesintegrand size = 0.143, Rules used = {12, 14, 2304} x130xlog(x)+log(x)x

Antiderivative was successfully verified.

[In]

Int[(31 - 30*x - 30*x^2 - 30*Log[x])/(30*x^2),x]

[Out]

-1/30*1/x - x - Log[x] + Log[x]/x

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2304

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log[c*x^
n]))/(d*(m + 1)), x] - Simp[(b*n*(d*x)^(m + 1))/(d*(m + 1)^2), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]

Rubi steps

integral=1303130x30x230log(x)x2dx=130(3130x30x2x230log(x)x2)dx=1303130x30x2x2dxlog(x)x2dx=1x+log(x)x+130(30+31x230x)dx=130xxlog(x)+log(x)x

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 21, normalized size = 1.00 130xxlog(x)+log(x)x

Antiderivative was successfully verified.

[In]

Integrate[(31 - 30*x - 30*x^2 - 30*Log[x])/(30*x^2),x]

[Out]

-1/30*1/x - x - Log[x] + Log[x]/x

________________________________________________________________________________________

fricas [A]  time = 0.88, size = 19, normalized size = 0.90 30x2+30(x1)log(x)+130x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/30*(-30*log(x)-30*x^2-30*x+31)/x^2,x, algorithm="fricas")

[Out]

-1/30*(30*x^2 + 30*(x - 1)*log(x) + 1)/x

________________________________________________________________________________________

giac [A]  time = 0.13, size = 19, normalized size = 0.90 x+log(x)x130xlog(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/30*(-30*log(x)-30*x^2-30*x+31)/x^2,x, algorithm="giac")

[Out]

-x + log(x)/x - 1/30/x - log(x)

________________________________________________________________________________________

maple [A]  time = 0.02, size = 19, normalized size = 0.90




method result size



norman 130xln(x)x2+ln(x)x 19
default ln(x)xx130xln(x) 20
risch ln(x)x30xln(x)+30x2+130x 25



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/30*(-30*ln(x)-30*x^2-30*x+31)/x^2,x,method=_RETURNVERBOSE)

[Out]

(-1/30-x*ln(x)-x^2+ln(x))/x

________________________________________________________________________________________

maxima [A]  time = 0.35, size = 19, normalized size = 0.90 x+log(x)x130xlog(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/30*(-30*log(x)-30*x^2-30*x+31)/x^2,x, algorithm="maxima")

[Out]

-x + log(x)/x - 1/30/x - log(x)

________________________________________________________________________________________

mupad [B]  time = 3.18, size = 16, normalized size = 0.76 ln(x)130xln(x)x

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(x + log(x) + x^2 - 31/30)/x^2,x)

[Out]

(log(x) - 1/30)/x - log(x) - x

________________________________________________________________________________________

sympy [A]  time = 0.11, size = 14, normalized size = 0.67 xlog(x)+log(x)x130x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/30*(-30*ln(x)-30*x**2-30*x+31)/x**2,x)

[Out]

-x - log(x) + log(x)/x - 1/(30*x)

________________________________________________________________________________________