3.41.41 20x+e2x(50+10x2)+e2x(102x2)log(25+10x2+x4)255x2+(5+x2)log(25+10x2+x4)dx

Optimal. Leaf size=23 e2x+5log(5log((5+x2)2))

________________________________________________________________________________________

Rubi [A]  time = 0.56, antiderivative size = 23, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 68, number of rulesintegrand size = 0.103, Rules used = {6741, 6725, 2194, 2475, 2390, 2302, 29} 5log(5log((x2+5)2))e2x

Antiderivative was successfully verified.

[In]

Int[(20*x + E^(2*x)*(50 + 10*x^2) + E^(2*x)*(-10 - 2*x^2)*Log[25 + 10*x^2 + x^4])/(-25 - 5*x^2 + (5 + x^2)*Log
[25 + 10*x^2 + x^4]),x]

[Out]

-E^(2*x) + 5*Log[5 - Log[(5 + x^2)^2]]

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2302

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/(x_), x_Symbol] :> Dist[1/(b*n), Subst[Int[x^p, x], x, a + b*L
og[c*x^n]], x] /; FreeQ[{a, b, c, n, p}, x]

Rule 2390

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_) + (g_.)*(x_))^(q_.), x_Symbol] :> Dist[1/
e, Subst[Int[((f*x)/d)^q*(a + b*Log[c*x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p, q}, x]
 && EqQ[e*f - d*g, 0]

Rule 2475

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m_.)*((f_) + (g_.)*(x_)^(s_))^(r_.),
 x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(f + g*x^(s/n))^r*(a + b*Log[c*(d + e*x)^p])^q,
x], x, x^n], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p, q, r, s}, x] && IntegerQ[r] && IntegerQ[s/n] && Intege
rQ[Simplify[(m + 1)/n]] && (GtQ[(m + 1)/n, 0] || IGtQ[q, 0])

Rule 6725

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rule 6741

Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]

Rubi steps

integral=20xe2x(50+10x2)e2x(102x2)log(25+10x2+x4)(5+x2)(5log((5+x2)2))dx=(2e2x+20x(5+x2)(5+log((5+x2)2)))dx=(2e2xdx)+20x(5+x2)(5+log((5+x2)2))dx=e2x+10Subst(1(5+x)(5+log((5+x)2))dx,x,x2)=e2x+10Subst(1x(5+log(x2))dx,x,5+x2)=e2x+5Subst(1xdx,x,5+log((5+x2)2))=e2x+5log(5log((5+x2)2))

________________________________________________________________________________________

Mathematica [A]  time = 0.13, size = 23, normalized size = 1.00 e2x+5log(5log((5+x2)2))

Antiderivative was successfully verified.

[In]

Integrate[(20*x + E^(2*x)*(50 + 10*x^2) + E^(2*x)*(-10 - 2*x^2)*Log[25 + 10*x^2 + x^4])/(-25 - 5*x^2 + (5 + x^
2)*Log[25 + 10*x^2 + x^4]),x]

[Out]

-E^(2*x) + 5*Log[5 - Log[(5 + x^2)^2]]

________________________________________________________________________________________

fricas [A]  time = 0.63, size = 23, normalized size = 1.00 e(2x)+5log(log(x4+10x2+25)5)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*x^2-10)*exp(2*x)*log(x^4+10*x^2+25)+(10*x^2+50)*exp(2*x)+20*x)/((x^2+5)*log(x^4+10*x^2+25)-5*x^
2-25),x, algorithm="fricas")

[Out]

-e^(2*x) + 5*log(log(x^4 + 10*x^2 + 25) - 5)

________________________________________________________________________________________

giac [A]  time = 0.17, size = 23, normalized size = 1.00 e(2x)+5log(log(x4+10x2+25)5)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*x^2-10)*exp(2*x)*log(x^4+10*x^2+25)+(10*x^2+50)*exp(2*x)+20*x)/((x^2+5)*log(x^4+10*x^2+25)-5*x^
2-25),x, algorithm="giac")

[Out]

-e^(2*x) + 5*log(log(x^4 + 10*x^2 + 25) - 5)

________________________________________________________________________________________

maple [A]  time = 0.17, size = 24, normalized size = 1.04




method result size



default e2x+5ln(ln(x4+10x2+25)5) 24
norman e2x+5ln(ln(x4+10x2+25)5) 24
risch e2x+5ln(ln(x2+5)i(πcsgn(i(x2+5))2csgn(i(x2+5)2)2πcsgn(i(x2+5))csgn(i(x2+5)2)2+πcsgn(i(x2+5)2)310i)4) 88



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-2*x^2-10)*exp(2*x)*ln(x^4+10*x^2+25)+(10*x^2+50)*exp(2*x)+20*x)/((x^2+5)*ln(x^4+10*x^2+25)-5*x^2-25),x,
method=_RETURNVERBOSE)

[Out]

-exp(2*x)+5*ln(ln(x^4+10*x^2+25)-5)

________________________________________________________________________________________

maxima [A]  time = 0.42, size = 18, normalized size = 0.78 e(2x)+5log(log(x2+5)52)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*x^2-10)*exp(2*x)*log(x^4+10*x^2+25)+(10*x^2+50)*exp(2*x)+20*x)/((x^2+5)*log(x^4+10*x^2+25)-5*x^
2-25),x, algorithm="maxima")

[Out]

-e^(2*x) + 5*log(log(x^2 + 5) - 5/2)

________________________________________________________________________________________

mupad [B]  time = 3.26, size = 23, normalized size = 1.00 5ln(ln(x4+10x2+25)5)e2x

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(20*x + exp(2*x)*(10*x^2 + 50) - exp(2*x)*log(10*x^2 + x^4 + 25)*(2*x^2 + 10))/(5*x^2 - log(10*x^2 + x^4
+ 25)*(x^2 + 5) + 25),x)

[Out]

5*log(log(10*x^2 + x^4 + 25) - 5) - exp(2*x)

________________________________________________________________________________________

sympy [A]  time = 0.39, size = 20, normalized size = 0.87 e2x+5log(log(x4+10x2+25)5)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*x**2-10)*exp(2*x)*ln(x**4+10*x**2+25)+(10*x**2+50)*exp(2*x)+20*x)/((x**2+5)*ln(x**4+10*x**2+25)
-5*x**2-25),x)

[Out]

-exp(2*x) + 5*log(log(x**4 + 10*x**2 + 25) - 5)

________________________________________________________________________________________