3.41.41
Optimal. Leaf size=23
________________________________________________________________________________________
Rubi [A] time = 0.56, antiderivative size = 23, normalized size of antiderivative = 1.00,
number of steps used = 8, number of rules used = 7, integrand size = 68, = 0.103, Rules used =
{6741, 6725, 2194, 2475, 2390, 2302, 29}
Antiderivative was successfully verified.
[In]
Int[(20*x + E^(2*x)*(50 + 10*x^2) + E^(2*x)*(-10 - 2*x^2)*Log[25 + 10*x^2 + x^4])/(-25 - 5*x^2 + (5 + x^2)*Log
[25 + 10*x^2 + x^4]),x]
[Out]
-E^(2*x) + 5*Log[5 - Log[(5 + x^2)^2]]
Rule 29
Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]
Rule 2194
Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]
Rule 2302
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/(x_), x_Symbol] :> Dist[1/(b*n), Subst[Int[x^p, x], x, a + b*L
og[c*x^n]], x] /; FreeQ[{a, b, c, n, p}, x]
Rule 2390
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_) + (g_.)*(x_))^(q_.), x_Symbol] :> Dist[1/
e, Subst[Int[((f*x)/d)^q*(a + b*Log[c*x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p, q}, x]
&& EqQ[e*f - d*g, 0]
Rule 2475
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m_.)*((f_) + (g_.)*(x_)^(s_))^(r_.),
x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(f + g*x^(s/n))^r*(a + b*Log[c*(d + e*x)^p])^q,
x], x, x^n], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p, q, r, s}, x] && IntegerQ[r] && IntegerQ[s/n] && Intege
rQ[Simplify[(m + 1)/n]] && (GtQ[(m + 1)/n, 0] || IGtQ[q, 0])
Rule 6725
Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
/; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]
Rule 6741
Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 23, normalized size = 1.00
Antiderivative was successfully verified.
[In]
Integrate[(20*x + E^(2*x)*(50 + 10*x^2) + E^(2*x)*(-10 - 2*x^2)*Log[25 + 10*x^2 + x^4])/(-25 - 5*x^2 + (5 + x^
2)*Log[25 + 10*x^2 + x^4]),x]
[Out]
-E^(2*x) + 5*Log[5 - Log[(5 + x^2)^2]]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 23, normalized size = 1.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-2*x^2-10)*exp(2*x)*log(x^4+10*x^2+25)+(10*x^2+50)*exp(2*x)+20*x)/((x^2+5)*log(x^4+10*x^2+25)-5*x^
2-25),x, algorithm="fricas")
[Out]
-e^(2*x) + 5*log(log(x^4 + 10*x^2 + 25) - 5)
________________________________________________________________________________________
giac [A] time = 0.17, size = 23, normalized size = 1.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-2*x^2-10)*exp(2*x)*log(x^4+10*x^2+25)+(10*x^2+50)*exp(2*x)+20*x)/((x^2+5)*log(x^4+10*x^2+25)-5*x^
2-25),x, algorithm="giac")
[Out]
-e^(2*x) + 5*log(log(x^4 + 10*x^2 + 25) - 5)
________________________________________________________________________________________
maple [A] time = 0.17, size = 24, normalized size = 1.04
|
|
|
method |
result |
size |
|
|
|
default |
|
|
norman |
|
|
risch |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((-2*x^2-10)*exp(2*x)*ln(x^4+10*x^2+25)+(10*x^2+50)*exp(2*x)+20*x)/((x^2+5)*ln(x^4+10*x^2+25)-5*x^2-25),x,
method=_RETURNVERBOSE)
[Out]
-exp(2*x)+5*ln(ln(x^4+10*x^2+25)-5)
________________________________________________________________________________________
maxima [A] time = 0.42, size = 18, normalized size = 0.78
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-2*x^2-10)*exp(2*x)*log(x^4+10*x^2+25)+(10*x^2+50)*exp(2*x)+20*x)/((x^2+5)*log(x^4+10*x^2+25)-5*x^
2-25),x, algorithm="maxima")
[Out]
-e^(2*x) + 5*log(log(x^2 + 5) - 5/2)
________________________________________________________________________________________
mupad [B] time = 3.26, size = 23, normalized size = 1.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(20*x + exp(2*x)*(10*x^2 + 50) - exp(2*x)*log(10*x^2 + x^4 + 25)*(2*x^2 + 10))/(5*x^2 - log(10*x^2 + x^4
+ 25)*(x^2 + 5) + 25),x)
[Out]
5*log(log(10*x^2 + x^4 + 25) - 5) - exp(2*x)
________________________________________________________________________________________
sympy [A] time = 0.39, size = 20, normalized size = 0.87
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-2*x**2-10)*exp(2*x)*ln(x**4+10*x**2+25)+(10*x**2+50)*exp(2*x)+20*x)/((x**2+5)*ln(x**4+10*x**2+25)
-5*x**2-25),x)
[Out]
-exp(2*x) + 5*log(log(x**4 + 10*x**2 + 25) - 5)
________________________________________________________________________________________