3.41.42 e3212e13(ex+3x)4x12x24+x(4896x12x2+e13(ex+3x)(3612x+ex(16+4x)))16+8x+x2dx

Optimal. Leaf size=31 e4+12(4eex3+xx2)4+x

________________________________________________________________________________________

Rubi [F]  time = 6.99, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} exp(3212e13(ex+3x)4x12x24+x)(4896x12x2+e13(ex+3x)(3612x+ex(16+4x)))16+8x+x2dx

Verification is not applicable to the result.

[In]

Int[(E^((32 - 12*E^((-E^x + 3*x)/3) - 4*x - 12*x^2)/(4 + x))*(-48 - 96*x - 12*x^2 + E^((-E^x + 3*x)/3)*(-36 -
12*x + E^x*(16 + 4*x))))/(16 + 8*x + x^2),x]

[Out]

-12*Defer[Int][E^((32 - 12*E^((-E^x + 3*x)/3) - 4*x - 12*x^2)/(4 + x)), x] + 144*Defer[Int][E^((32 - 12*E^((-E
^x + 3*x)/3) - 4*x - 12*x^2)/(4 + x))/(4 + x)^2, x] + 12*Defer[Int][E^(-1/3*E^x + x + (32 - 12*E^((-E^x + 3*x)
/3) - 4*x - 12*x^2)/(4 + x))/(4 + x)^2, x] - 12*Defer[Int][E^(-1/3*E^x + x + (32 - 12*E^((-E^x + 3*x)/3) - 4*x
 - 12*x^2)/(4 + x))/(4 + x), x] + 4*Defer[Int][E^((-E^x + 6*x)/3 + (32 - 12*E^((-E^x + 3*x)/3) - 4*x - 12*x^2)
/(4 + x))/(4 + x), x]

Rubi steps

integral=exp(3212e13(ex+3x)4x12x24+x)(4896x12x2+e13(ex+3x)(3612x+ex(16+4x)))(4+x)2dx=(12exp(ex3+x+3212e13(ex+3x)4x12x24+x)(3+x)(4+x)2+4exp(13(ex+6x)+3212e13(ex+3x)4x12x24+x)4+x12exp(3212e13(ex+3x)4x12x24+x)(4+8x+x2)(4+x)2)dx=4exp(13(ex+6x)+3212e13(ex+3x)4x12x24+x)4+xdx12exp(ex3+x+3212e13(ex+3x)4x12x24+x)(3+x)(4+x)2dx12exp(3212e13(ex+3x)4x12x24+x)(4+8x+x2)(4+x)2dx=4exp(13(ex+6x)+3212e13(ex+3x)4x12x24+x)4+xdx12(exp(3212e13(ex+3x)4x12x24+x)12exp(3212e13(ex+3x)4x12x24+x)(4+x)2)dx12(exp(ex3+x+3212e13(ex+3x)4x12x24+x)(4+x)2+exp(ex3+x+3212e13(ex+3x)4x12x24+x)4+x)dx=4exp(13(ex+6x)+3212e13(ex+3x)4x12x24+x)4+xdx12exp(3212e13(ex+3x)4x12x24+x)dx+12exp(ex3+x+3212e13(ex+3x)4x12x24+x)(4+x)2dx12exp(ex3+x+3212e13(ex+3x)4x12x24+x)4+xdx+144exp(3212e13(ex+3x)4x12x24+x)(4+x)2dx

________________________________________________________________________________________

Mathematica [A]  time = 0.21, size = 32, normalized size = 1.03 e4412x1444+x12eex3+x4+x

Antiderivative was successfully verified.

[In]

Integrate[(E^((32 - 12*E^((-E^x + 3*x)/3) - 4*x - 12*x^2)/(4 + x))*(-48 - 96*x - 12*x^2 + E^((-E^x + 3*x)/3)*(
-36 - 12*x + E^x*(16 + 4*x))))/(16 + 8*x + x^2),x]

[Out]

E^(44 - 12*x - 144/(4 + x) - (12*E^(-1/3*E^x + x))/(4 + x))

________________________________________________________________________________________

fricas [A]  time = 0.82, size = 25, normalized size = 0.81 e(4(3x2+x+3e(x13ex)8)x+4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((4*x+16)*exp(x)-12*x-36)*exp(-1/3*exp(x)+x)-12*x^2-96*x-48)*exp((-12*exp(-1/3*exp(x)+x)-12*x^2-4*x
+32)/(4+x))/(x^2+8*x+16),x, algorithm="fricas")

[Out]

e^(-4*(3*x^2 + x + 3*e^(x - 1/3*e^x) - 8)/(x + 4))

________________________________________________________________________________________

giac [A]  time = 0.44, size = 41, normalized size = 1.32 e(12x2x+44xx+412e(x13ex)x+4+32x+4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((4*x+16)*exp(x)-12*x-36)*exp(-1/3*exp(x)+x)-12*x^2-96*x-48)*exp((-12*exp(-1/3*exp(x)+x)-12*x^2-4*x
+32)/(4+x))/(x^2+8*x+16),x, algorithm="giac")

[Out]

e^(-12*x^2/(x + 4) - 4*x/(x + 4) - 12*e^(x - 1/3*e^x)/(x + 4) + 32/(x + 4))

________________________________________________________________________________________

maple [A]  time = 0.16, size = 26, normalized size = 0.84




method result size



risch e4(3x2+3eex3+x+x8)4+x 26
norman xe12eex3+x12x24x+324+x+4e12eex3+x12x24x+324+x4+x 64



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((4*x+16)*exp(x)-12*x-36)*exp(-1/3*exp(x)+x)-12*x^2-96*x-48)*exp((-12*exp(-1/3*exp(x)+x)-12*x^2-4*x+32)/(
4+x))/(x^2+8*x+16),x,method=_RETURNVERBOSE)

[Out]

exp(-4*(3*x^2+3*exp(-1/3*exp(x)+x)+x-8)/(4+x))

________________________________________________________________________________________

maxima [A]  time = 0.59, size = 27, normalized size = 0.87 e(12x12e(x13ex)x+4144x+4+44)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((4*x+16)*exp(x)-12*x-36)*exp(-1/3*exp(x)+x)-12*x^2-96*x-48)*exp((-12*exp(-1/3*exp(x)+x)-12*x^2-4*x
+32)/(4+x))/(x^2+8*x+16),x, algorithm="maxima")

[Out]

e^(-12*x - 12*e^(x - 1/3*e^x)/(x + 4) - 144/(x + 4) + 44)

________________________________________________________________________________________

mupad [B]  time = 3.19, size = 44, normalized size = 1.42 e4xx+4e12eex3exx+4e12x2x+4e32x+4

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(-(4*x + 12*exp(x - exp(x)/3) + 12*x^2 - 32)/(x + 4))*(96*x + exp(x - exp(x)/3)*(12*x - exp(x)*(4*x +
 16) + 36) + 12*x^2 + 48))/(8*x + x^2 + 16),x)

[Out]

exp(-(4*x)/(x + 4))*exp(-(12*exp(-exp(x)/3)*exp(x))/(x + 4))*exp(-(12*x^2)/(x + 4))*exp(32/(x + 4))

________________________________________________________________________________________

sympy [A]  time = 0.78, size = 24, normalized size = 0.77 e12x24x12exex3+32x+4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((4*x+16)*exp(x)-12*x-36)*exp(-1/3*exp(x)+x)-12*x**2-96*x-48)*exp((-12*exp(-1/3*exp(x)+x)-12*x**2-4
*x+32)/(4+x))/(x**2+8*x+16),x)

[Out]

exp((-12*x**2 - 4*x - 12*exp(x - exp(x)/3) + 32)/(x + 4))

________________________________________________________________________________________