Optimal. Leaf size=25 \[ -4+2 x-\frac {2 x^5}{9 (2-x) \log ^2(2 x)} \]
________________________________________________________________________________________
Rubi [F] time = 0.28, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {8 x^4-4 x^5+\left (-20 x^4+8 x^5\right ) \log (2 x)+\left (72-72 x+18 x^2\right ) \log ^3(2 x)}{\left (36-36 x+9 x^2\right ) \log ^3(2 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8 x^4-4 x^5+\left (-20 x^4+8 x^5\right ) \log (2 x)+\left (72-72 x+18 x^2\right ) \log ^3(2 x)}{9 (-2+x)^2 \log ^3(2 x)} \, dx\\ &=\frac {1}{9} \int \frac {8 x^4-4 x^5+\left (-20 x^4+8 x^5\right ) \log (2 x)+\left (72-72 x+18 x^2\right ) \log ^3(2 x)}{(-2+x)^2 \log ^3(2 x)} \, dx\\ &=\frac {1}{9} \int \left (18-\frac {4 x^4}{(-2+x) \log ^3(2 x)}+\frac {4 x^4 (-5+2 x)}{(-2+x)^2 \log ^2(2 x)}\right ) \, dx\\ &=2 x-\frac {4}{9} \int \frac {x^4}{(-2+x) \log ^3(2 x)} \, dx+\frac {4}{9} \int \frac {x^4 (-5+2 x)}{(-2+x)^2 \log ^2(2 x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.28, size = 22, normalized size = 0.88 \begin {gather*} 2 x+\frac {2 x^5}{9 (-2+x) \log ^2(2 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 32, normalized size = 1.28 \begin {gather*} \frac {2 \, {\left (x^{5} + 9 \, {\left (x^{2} - 2 \, x\right )} \log \left (2 \, x\right )^{2}\right )}}{9 \, {\left (x - 2\right )} \log \left (2 \, x\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 28, normalized size = 1.12 \begin {gather*} \frac {2 \, x^{5}}{9 \, {\left (x \log \left (2 \, x\right )^{2} - 2 \, \log \left (2 \, x\right )^{2}\right )}} + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 21, normalized size = 0.84
method | result | size |
risch | \(2 x +\frac {2 x^{5}}{9 \left (x -2\right ) \ln \left (2 x \right )^{2}}\) | \(21\) |
norman | \(\frac {-8 \ln \left (2 x \right )^{2}+\frac {2 x^{5}}{9}+2 x^{2} \ln \left (2 x \right )^{2}}{\left (x -2\right ) \ln \left (2 x \right )^{2}}\) | \(38\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.51, size = 87, normalized size = 3.48 \begin {gather*} \frac {2 \, {\left (x^{5} + 9 \, x^{2} \log \relax (2)^{2} - 18 \, x \log \relax (2)^{2} + 9 \, {\left (x^{2} - 2 \, x\right )} \log \relax (x)^{2} + 18 \, {\left (x^{2} \log \relax (2) - 2 \, x \log \relax (2)\right )} \log \relax (x)\right )}}{9 \, {\left (x \log \relax (2)^{2} + {\left (x - 2\right )} \log \relax (x)^{2} - 2 \, \log \relax (2)^{2} + 2 \, {\left (x \log \relax (2) - 2 \, \log \relax (2)\right )} \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.13, size = 20, normalized size = 0.80 \begin {gather*} \frac {2\,x^5}{9\,{\ln \left (2\,x\right )}^2\,\left (x-2\right )}+\frac {2\,x\,\left (9\,x-18\right )}{9\,\left (x-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 19, normalized size = 0.76 \begin {gather*} \frac {2 x^{5}}{\left (9 x - 18\right ) \log {\left (2 x \right )}^{2}} + 2 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________