Optimal. Leaf size=18 \[ -\frac {5}{256}+\log (3)-\log \left (1+4 e^{-x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 10, normalized size of antiderivative = 0.56, number of steps used = 5, number of rules used = 5, integrand size = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.556, Rules used = {12, 2282, 36, 29, 31} \begin {gather*} x-\log \left (e^x+4\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 29
Rule 31
Rule 36
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=4 \int \frac {1}{4+e^x} \, dx\\ &=4 \operatorname {Subst}\left (\int \frac {1}{x (4+x)} \, dx,x,e^x\right )\\ &=\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^x\right )-\operatorname {Subst}\left (\int \frac {1}{4+x} \, dx,x,e^x\right )\\ &=x-\log \left (4+e^x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 18, normalized size = 1.00 \begin {gather*} 4 \left (\frac {x}{4}-\frac {1}{4} \log \left (4+e^x\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 9, normalized size = 0.50 \begin {gather*} x - \log \left (e^{x} + 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.31, size = 9, normalized size = 0.50 \begin {gather*} x - \log \left (e^{x} + 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 10, normalized size = 0.56
method | result | size |
norman | \(x -\ln \left ({\mathrm e}^{x}+4\right )\) | \(10\) |
risch | \(x -\ln \left ({\mathrm e}^{x}+4\right )\) | \(10\) |
derivativedivides | \(-\ln \left ({\mathrm e}^{x}+4\right )+\ln \left ({\mathrm e}^{x}\right )\) | \(12\) |
default | \(-\ln \left ({\mathrm e}^{x}+4\right )+\ln \left ({\mathrm e}^{x}\right )\) | \(12\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 9, normalized size = 0.50 \begin {gather*} x - \log \left (e^{x} + 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.05, size = 9, normalized size = 0.50 \begin {gather*} x-\ln \left ({\mathrm {e}}^x+4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.07, size = 7, normalized size = 0.39 \begin {gather*} x - \log {\left (e^{x} + 4 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________