Optimal. Leaf size=23 \[ \frac {3 \left (-3+e^{9+x^2}-\frac {9 x^2}{5}\right )^2}{x} \]
________________________________________________________________________________________
Rubi [B] time = 0.37, antiderivative size = 56, normalized size of antiderivative = 2.43, number of steps used = 13, number of rules used = 7, integrand size = 56, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {12, 14, 2289, 6742, 2204, 2214, 2212} \begin {gather*} \frac {243 x^3}{25}-\frac {54}{5} e^{x^2+9} x-\frac {18 e^{x^2+9}}{x}+\frac {3 e^{2 x^2+18}}{x}+\frac {162 x}{5}+\frac {27}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2204
Rule 2212
Rule 2214
Rule 2289
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{25} \int \frac {-675+810 x^2+729 x^4+e^{18+2 x^2} \left (-75+300 x^2\right )+e^{9+x^2} \left (450-1170 x^2-540 x^4\right )}{x^2} \, dx\\ &=\frac {1}{25} \int \left (\frac {75 e^{18+2 x^2} (-1+2 x) (1+2 x)}{x^2}-\frac {90 e^{9+x^2} \left (5+2 x^2\right ) \left (-1+3 x^2\right )}{x^2}+\frac {27 \left (-25+30 x^2+27 x^4\right )}{x^2}\right ) \, dx\\ &=\frac {27}{25} \int \frac {-25+30 x^2+27 x^4}{x^2} \, dx+3 \int \frac {e^{18+2 x^2} (-1+2 x) (1+2 x)}{x^2} \, dx-\frac {18}{5} \int \frac {e^{9+x^2} \left (5+2 x^2\right ) \left (-1+3 x^2\right )}{x^2} \, dx\\ &=\frac {3 e^{18+2 x^2}}{x}+\frac {27}{25} \int \left (30-\frac {25}{x^2}+27 x^2\right ) \, dx-\frac {18}{5} \int \left (13 e^{9+x^2}-\frac {5 e^{9+x^2}}{x^2}+6 e^{9+x^2} x^2\right ) \, dx\\ &=\frac {27}{x}+\frac {3 e^{18+2 x^2}}{x}+\frac {162 x}{5}+\frac {243 x^3}{25}+18 \int \frac {e^{9+x^2}}{x^2} \, dx-\frac {108}{5} \int e^{9+x^2} x^2 \, dx-\frac {234}{5} \int e^{9+x^2} \, dx\\ &=\frac {27}{x}-\frac {18 e^{9+x^2}}{x}+\frac {3 e^{18+2 x^2}}{x}+\frac {162 x}{5}-\frac {54}{5} e^{9+x^2} x+\frac {243 x^3}{25}-\frac {117}{5} e^9 \sqrt {\pi } \text {erfi}(x)+\frac {54}{5} \int e^{9+x^2} \, dx+36 \int e^{9+x^2} \, dx\\ &=\frac {27}{x}-\frac {18 e^{9+x^2}}{x}+\frac {3 e^{18+2 x^2}}{x}+\frac {162 x}{5}-\frac {54}{5} e^{9+x^2} x+\frac {243 x^3}{25}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 25, normalized size = 1.09 \begin {gather*} \frac {3 \left (15-5 e^{9+x^2}+9 x^2\right )^2}{25 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 42, normalized size = 1.83 \begin {gather*} \frac {3 \, {\left (81 \, x^{4} + 270 \, x^{2} - 30 \, {\left (3 \, x^{2} + 5\right )} e^{\left (x^{2} + 9\right )} + 25 \, e^{\left (2 \, x^{2} + 18\right )} + 225\right )}}{25 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.29, size = 46, normalized size = 2.00 \begin {gather*} \frac {3 \, {\left (81 \, x^{4} - 90 \, x^{2} e^{\left (x^{2} + 9\right )} + 270 \, x^{2} + 25 \, e^{\left (2 \, x^{2} + 18\right )} - 150 \, e^{\left (x^{2} + 9\right )} + 225\right )}}{25 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.05, size = 46, normalized size = 2.00
method | result | size |
norman | \(\frac {27+\frac {162 x^{2}}{5}+\frac {243 x^{4}}{25}+3 \,{\mathrm e}^{2 x^{2}+18}-\frac {54 \,{\mathrm e}^{x^{2}+9} x^{2}}{5}-18 \,{\mathrm e}^{x^{2}+9}}{x}\) | \(46\) |
risch | \(\frac {162 x}{5}+\frac {27}{x}+\frac {243 x^{3}}{25}+\frac {3 \,{\mathrm e}^{2 x^{2}+18}}{x}-\frac {18 \left (3 x^{2}+5\right ) {\mathrm e}^{x^{2}+9}}{5 x}\) | \(46\) |
default | \(\frac {162 x}{5}+\frac {27}{x}+\frac {243 x^{3}}{25}-\frac {117 \,{\mathrm e}^{9} \sqrt {\pi }\, \erfi \relax (x )}{5}+3 \,{\mathrm e}^{18} \sqrt {2}\, \sqrt {\pi }\, \erfi \left (\sqrt {2}\, x \right )+18 \,{\mathrm e}^{9} \left (-\frac {{\mathrm e}^{x^{2}}}{x}+\sqrt {\pi }\, \erfi \relax (x )\right )-3 \,{\mathrm e}^{18} \left (-\frac {{\mathrm e}^{2 x^{2}}}{x}+\sqrt {2}\, \sqrt {\pi }\, \erfi \left (\sqrt {2}\, x \right )\right )-\frac {108 \,{\mathrm e}^{9} \left (\frac {{\mathrm e}^{x^{2}} x}{2}-\frac {\sqrt {\pi }\, \erfi \relax (x )}{4}\right )}{5}\) | \(112\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.87, size = 96, normalized size = 4.17 \begin {gather*} \frac {243}{25} \, x^{3} - 3 i \, \sqrt {2} \sqrt {\pi } \operatorname {erf}\left (i \, \sqrt {2} x\right ) e^{18} + 18 i \, \sqrt {\pi } \operatorname {erf}\left (i \, x\right ) e^{9} - \frac {54}{5} \, x e^{\left (x^{2} + 9\right )} + \frac {3 \, \sqrt {2} \sqrt {-x^{2}} e^{18} \Gamma \left (-\frac {1}{2}, -2 \, x^{2}\right )}{2 \, x} - \frac {9 \, \sqrt {-x^{2}} e^{9} \Gamma \left (-\frac {1}{2}, -x^{2}\right )}{x} + \frac {162}{5} \, x + \frac {27}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.47, size = 22, normalized size = 0.96 \begin {gather*} \frac {3\,{\left (9\,x^2-5\,{\mathrm {e}}^{x^2+9}+15\right )}^2}{25\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.15, size = 48, normalized size = 2.09 \begin {gather*} \frac {243 x^{3}}{25} + \frac {162 x}{5} + \frac {27}{x} + \frac {15 x e^{2 x^{2} + 18} + \left (- 54 x^{3} - 90 x\right ) e^{x^{2} + 9}}{5 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________