3.41.48
Optimal. Leaf size=24
________________________________________________________________________________________
Rubi [F] time = 1.74, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(2*Log[2] - 4*E^(3 + x)*Log[2] - 2*E^(3 + x)*x*Log[2]*Log[x^2] + (Log[2] - 2*E^(3 + x)*Log[2])*Log[x^2]*Lo
g[(1 - 2*E^(3 + x))*Log[x^2]])/((-x^2 + 2*E^(3 + x)*x^2)*Log[x^2]*Log[(1 - 2*E^(3 + x))*Log[x^2]]^2),x]
[Out]
-(Log[2]*Defer[Int][1/(x*Log[(1 - 2*E^(3 + x))*Log[x^2]]^2), x]) - Log[2]*Defer[Int][1/((-1 + 2*E^(3 + x))*x*L
og[(1 - 2*E^(3 + x))*Log[x^2]]^2), x] - 2*Log[2]*Defer[Int][1/(x^2*Log[x^2]*Log[(1 - 2*E^(3 + x))*Log[x^2]]^2)
, x] - Log[2]*Defer[Int][1/(x^2*Log[(1 - 2*E^(3 + x))*Log[x^2]]), x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 23, normalized size = 0.96
Antiderivative was successfully verified.
[In]
Integrate[(2*Log[2] - 4*E^(3 + x)*Log[2] - 2*E^(3 + x)*x*Log[2]*Log[x^2] + (Log[2] - 2*E^(3 + x)*Log[2])*Log[x
^2]*Log[(1 - 2*E^(3 + x))*Log[x^2]])/((-x^2 + 2*E^(3 + x)*x^2)*Log[x^2]*Log[(1 - 2*E^(3 + x))*Log[x^2]]^2),x]
[Out]
Log[2]/(x*Log[(1 - 2*E^(3 + x))*Log[x^2]])
________________________________________________________________________________________
fricas [A] time = 0.64, size = 23, normalized size = 0.96
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-2*log(2)*exp(3+x)+log(2))*log(x^2)*log((-2*exp(3+x)+1)*log(x^2))-2*x*log(2)*exp(3+x)*log(x^2)-4*l
og(2)*exp(3+x)+2*log(2))/(2*x^2*exp(3+x)-x^2)/log(x^2)/log((-2*exp(3+x)+1)*log(x^2))^2,x, algorithm="fricas")
[Out]
log(2)/(x*log(-(2*e^(x + 3) - 1)*log(x^2)))
________________________________________________________________________________________
giac [A] time = 0.60, size = 24, normalized size = 1.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-2*log(2)*exp(3+x)+log(2))*log(x^2)*log((-2*exp(3+x)+1)*log(x^2))-2*x*log(2)*exp(3+x)*log(x^2)-4*l
og(2)*exp(3+x)+2*log(2))/(2*x^2*exp(3+x)-x^2)/log(x^2)/log((-2*exp(3+x)+1)*log(x^2))^2,x, algorithm="giac")
[Out]
log(2)/(x*log(-2*e^(x + 3)*log(x^2) + log(x^2)))
________________________________________________________________________________________
maple [C] time = 0.26, size = 831, normalized size = 34.62
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((-2*ln(2)*exp(3+x)+ln(2))*ln(x^2)*ln((-2*exp(3+x)+1)*ln(x^2))-2*x*ln(2)*exp(3+x)*ln(x^2)-4*ln(2)*exp(3+x)
+2*ln(2))/(2*x^2*exp(3+x)-x^2)/ln(x^2)/ln((-2*exp(3+x)+1)*ln(x^2))^2,x,method=_RETURNVERBOSE)
[Out]
2*I*ln(2)/x/(Pi*csgn(I*(exp(3+x)-1/2)*(Pi*csgn(I*x^2)^3+4*I*ln(x)+Pi*csgn(I*x)^2*csgn(I*x^2)-2*Pi*csgn(I*x)*cs
gn(I*x^2)^2))*csgn((exp(3+x)-1/2)*(Pi*csgn(I*x^2)^3+4*I*ln(x)+Pi*csgn(I*x)^2*csgn(I*x^2)-2*Pi*csgn(I*x)*csgn(I
*x^2)^2))+Pi*csgn((exp(3+x)-1/2)*(Pi*csgn(I*x^2)^3+4*I*ln(x)+Pi*csgn(I*x)^2*csgn(I*x^2)-2*Pi*csgn(I*x)*csgn(I*
x^2)^2))^2+Pi*csgn(I*(exp(3+x)-1/2))*csgn(I*(Pi*csgn(I*x^2)^3+4*I*ln(x)+Pi*csgn(I*x)^2*csgn(I*x^2)-2*Pi*csgn(I
*x)*csgn(I*x^2)^2))*csgn(I*(exp(3+x)-1/2)*(Pi*csgn(I*x^2)^3+4*I*ln(x)+Pi*csgn(I*x)^2*csgn(I*x^2)-2*Pi*csgn(I*x
)*csgn(I*x^2)^2))-Pi*csgn(I*(exp(3+x)-1/2))*csgn(I*(exp(3+x)-1/2)*(Pi*csgn(I*x^2)^3+4*I*ln(x)+Pi*csgn(I*x)^2*c
sgn(I*x^2)-2*Pi*csgn(I*x)*csgn(I*x^2)^2))^2-Pi*csgn(I*(Pi*csgn(I*x^2)^3+4*I*ln(x)+Pi*csgn(I*x)^2*csgn(I*x^2)-2
*Pi*csgn(I*x)*csgn(I*x^2)^2))*csgn(I*(exp(3+x)-1/2)*(Pi*csgn(I*x^2)^3+4*I*ln(x)+Pi*csgn(I*x)^2*csgn(I*x^2)-2*P
i*csgn(I*x)*csgn(I*x^2)^2))^2+Pi*csgn(I*(exp(3+x)-1/2)*(Pi*csgn(I*x^2)^3+4*I*ln(x)+Pi*csgn(I*x)^2*csgn(I*x^2)-
2*Pi*csgn(I*x)*csgn(I*x^2)^2))^3-Pi*csgn(I*(exp(3+x)-1/2)*(Pi*csgn(I*x^2)^3+4*I*ln(x)+Pi*csgn(I*x)^2*csgn(I*x^
2)-2*Pi*csgn(I*x)*csgn(I*x^2)^2))*csgn((exp(3+x)-1/2)*(Pi*csgn(I*x^2)^3+4*I*ln(x)+Pi*csgn(I*x)^2*csgn(I*x^2)-2
*Pi*csgn(I*x)*csgn(I*x^2)^2))^2-Pi*csgn((exp(3+x)-1/2)*(Pi*csgn(I*x^2)^3+4*I*ln(x)+Pi*csgn(I*x)^2*csgn(I*x^2)-
2*Pi*csgn(I*x)*csgn(I*x^2)^2))^3-Pi+2*I*ln(exp(3+x)-1/2)+2*I*ln(Pi*csgn(I*x^2)^3+4*I*ln(x)+Pi*csgn(I*x)^2*csgn
(I*x^2)-2*Pi*csgn(I*x)*csgn(I*x^2)^2))
________________________________________________________________________________________
maxima [C] time = 0.51, size = 30, normalized size = 1.25
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-2*log(2)*exp(3+x)+log(2))*log(x^2)*log((-2*exp(3+x)+1)*log(x^2))-2*x*log(2)*exp(3+x)*log(x^2)-4*l
og(2)*exp(3+x)+2*log(2))/(2*x^2*exp(3+x)-x^2)/log(x^2)/log((-2*exp(3+x)+1)*log(x^2))^2,x, algorithm="maxima")
[Out]
log(2)/((I*pi + log(2))*x + x*log(2*e^(x + 3) - 1) + x*log(log(x)))
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((2*log(2) - 4*exp(x + 3)*log(2) + log(-log(x^2)*(2*exp(x + 3) - 1))*log(x^2)*(log(2) - 2*exp(x + 3)*log(2)
) - 2*x*log(x^2)*exp(x + 3)*log(2))/(log(-log(x^2)*(2*exp(x + 3) - 1))^2*log(x^2)*(2*x^2*exp(x + 3) - x^2)),x)
[Out]
int((2*log(2) - 4*exp(x + 3)*log(2) + log(-log(x^2)*(2*exp(x + 3) - 1))*log(x^2)*(log(2) - 2*exp(x + 3)*log(2)
) - 2*x*log(x^2)*exp(x + 3)*log(2))/(log(-log(x^2)*(2*exp(x + 3) - 1))^2*log(x^2)*(2*x^2*exp(x + 3) - x^2)), x
)
________________________________________________________________________________________
sympy [A] time = 0.56, size = 19, normalized size = 0.79
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-2*ln(2)*exp(3+x)+ln(2))*ln(x**2)*ln((-2*exp(3+x)+1)*ln(x**2))-2*x*ln(2)*exp(3+x)*ln(x**2)-4*ln(2)
*exp(3+x)+2*ln(2))/(2*x**2*exp(3+x)-x**2)/ln(x**2)/ln((-2*exp(3+x)+1)*ln(x**2))**2,x)
[Out]
log(2)/(x*log((1 - 2*exp(x + 3))*log(x**2)))
________________________________________________________________________________________