3.41.48 2log(2)4e3+xlog(2)2e3+xxlog(2)log(x2)+(log(2)2e3+xlog(2))log(x2)log((12e3+x)log(x2))(x2+2e3+xx2)log(x2)log2((12e3+x)log(x2))dx

Optimal. Leaf size=24 log(2)xlog(((1+2e3+x)log(x2)))

________________________________________________________________________________________

Rubi [F]  time = 1.74, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 2log(2)4e3+xlog(2)2e3+xxlog(2)log(x2)+(log(2)2e3+xlog(2))log(x2)log((12e3+x)log(x2))(x2+2e3+xx2)log(x2)log2((12e3+x)log(x2))dx

Verification is not applicable to the result.

[In]

Int[(2*Log[2] - 4*E^(3 + x)*Log[2] - 2*E^(3 + x)*x*Log[2]*Log[x^2] + (Log[2] - 2*E^(3 + x)*Log[2])*Log[x^2]*Lo
g[(1 - 2*E^(3 + x))*Log[x^2]])/((-x^2 + 2*E^(3 + x)*x^2)*Log[x^2]*Log[(1 - 2*E^(3 + x))*Log[x^2]]^2),x]

[Out]

-(Log[2]*Defer[Int][1/(x*Log[(1 - 2*E^(3 + x))*Log[x^2]]^2), x]) - Log[2]*Defer[Int][1/((-1 + 2*E^(3 + x))*x*L
og[(1 - 2*E^(3 + x))*Log[x^2]]^2), x] - 2*Log[2]*Defer[Int][1/(x^2*Log[x^2]*Log[(1 - 2*E^(3 + x))*Log[x^2]]^2)
, x] - Log[2]*Defer[Int][1/(x^2*Log[(1 - 2*E^(3 + x))*Log[x^2]]), x]

Rubi steps

integral=(log(2)(1+2e3+x)xlog2((12e3+x)log(x2))log(2)(2+xlog(x2)+log(x2)log((12e3+x)log(x2)))x2log(x2)log2((12e3+x)log(x2)))dx=(log(2)1(1+2e3+x)xlog2((12e3+x)log(x2))dx)log(2)2+xlog(x2)+log(x2)log((12e3+x)log(x2))x2log(x2)log2((12e3+x)log(x2))dx=(log(2)(2+xlog(x2)x2log(x2)log2((12e3+x)log(x2))+1x2log((12e3+x)log(x2)))dx)log(2)1(1+2e3+x)xlog2((12e3+x)log(x2))dx=(log(2)1(1+2e3+x)xlog2((12e3+x)log(x2))dx)log(2)2+xlog(x2)x2log(x2)log2((12e3+x)log(x2))dxlog(2)1x2log((12e3+x)log(x2))dx=(log(2)(1xlog2((12e3+x)log(x2))+2x2log(x2)log2((12e3+x)log(x2)))dx)log(2)1(1+2e3+x)xlog2((12e3+x)log(x2))dxlog(2)1x2log((12e3+x)log(x2))dx=(log(2)1xlog2((12e3+x)log(x2))dx)log(2)1(1+2e3+x)xlog2((12e3+x)log(x2))dxlog(2)1x2log((12e3+x)log(x2))dx(2log(2))1x2log(x2)log2((12e3+x)log(x2))dx

________________________________________________________________________________________

Mathematica [A]  time = 0.09, size = 23, normalized size = 0.96 log(2)xlog((12e3+x)log(x2))

Antiderivative was successfully verified.

[In]

Integrate[(2*Log[2] - 4*E^(3 + x)*Log[2] - 2*E^(3 + x)*x*Log[2]*Log[x^2] + (Log[2] - 2*E^(3 + x)*Log[2])*Log[x
^2]*Log[(1 - 2*E^(3 + x))*Log[x^2]])/((-x^2 + 2*E^(3 + x)*x^2)*Log[x^2]*Log[(1 - 2*E^(3 + x))*Log[x^2]]^2),x]

[Out]

Log[2]/(x*Log[(1 - 2*E^(3 + x))*Log[x^2]])

________________________________________________________________________________________

fricas [A]  time = 0.64, size = 23, normalized size = 0.96 log(2)xlog((2e(x+3)1)log(x2))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*log(2)*exp(3+x)+log(2))*log(x^2)*log((-2*exp(3+x)+1)*log(x^2))-2*x*log(2)*exp(3+x)*log(x^2)-4*l
og(2)*exp(3+x)+2*log(2))/(2*x^2*exp(3+x)-x^2)/log(x^2)/log((-2*exp(3+x)+1)*log(x^2))^2,x, algorithm="fricas")

[Out]

log(2)/(x*log(-(2*e^(x + 3) - 1)*log(x^2)))

________________________________________________________________________________________

giac [A]  time = 0.60, size = 24, normalized size = 1.00 log(2)xlog(2e(x+3)log(x2)+log(x2))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*log(2)*exp(3+x)+log(2))*log(x^2)*log((-2*exp(3+x)+1)*log(x^2))-2*x*log(2)*exp(3+x)*log(x^2)-4*l
og(2)*exp(3+x)+2*log(2))/(2*x^2*exp(3+x)-x^2)/log(x^2)/log((-2*exp(3+x)+1)*log(x^2))^2,x, algorithm="giac")

[Out]

log(2)/(x*log(-2*e^(x + 3)*log(x^2) + log(x^2)))

________________________________________________________________________________________

maple [C]  time = 0.26, size = 831, normalized size = 34.62




method result size



risch 2iln(2)x(πcsgn(i(e3+x12)(πcsgn(ix2)3+4iln(x)+πcsgn(ix)2csgn(ix2)2πcsgn(ix)csgn(ix2)2))csgn((e3+x12)(πcsgn(ix2)3+4iln(x)+πcsgn(ix)2csgn(ix2)2πcsgn(ix)csgn(ix2)2))+πcsgn((e3+x12)(πcsgn(ix2)3+4iln(x)+πcsgn(ix)2csgn(ix2)2πcsgn(ix)csgn(ix2)2))2+πcsgn(i(e3+x12))csgn(i(πcsgn(ix2)3+4iln(x)+πcsgn(ix)2csgn(ix2)2πcsgn(ix)csgn(ix2)2))csgn(i(e3+x12)(πcsgn(ix2)3+4iln(x)+πcsgn(ix)2csgn(ix2)2πcsgn(ix)csgn(ix2)2))πcsgn(i(e3+x12))csgn(i(e3+x12)(πcsgn(ix2)3+4iln(x)+πcsgn(ix)2csgn(ix2)2πcsgn(ix)csgn(ix2)2))2πcsgn(i(πcsgn(ix2)3+4iln(x)+πcsgn(ix)2csgn(ix2)2πcsgn(ix)csgn(ix2)2))csgn(i(e3+x12)(πcsgn(ix2)3+4iln(x)+πcsgn(ix)2csgn(ix2)2πcsgn(ix)csgn(ix2)2))2+πcsgn(i(e3+x12)(πcsgn(ix2)3+4iln(x)+πcsgn(ix)2csgn(ix2)2πcsgn(ix)csgn(ix2)2))3πcsgn(i(e3+x12)(πcsgn(ix2)3+4iln(x)+πcsgn(ix)2csgn(ix2)2πcsgn(ix)csgn(ix2)2))csgn((e3+x12)(πcsgn(ix2)3+4iln(x)+πcsgn(ix)2csgn(ix2)2πcsgn(ix)csgn(ix2)2))2πcsgn((e3+x12)(πcsgn(ix2)3+4iln(x)+πcsgn(ix)2csgn(ix2)2πcsgn(ix)csgn(ix2)2))3π+2iln(e3+x12)+2iln(πcsgn(ix2)3+4iln(x)+πcsgn(ix)2csgn(ix2)2πcsgn(ix)csgn(ix2)2)) 831



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-2*ln(2)*exp(3+x)+ln(2))*ln(x^2)*ln((-2*exp(3+x)+1)*ln(x^2))-2*x*ln(2)*exp(3+x)*ln(x^2)-4*ln(2)*exp(3+x)
+2*ln(2))/(2*x^2*exp(3+x)-x^2)/ln(x^2)/ln((-2*exp(3+x)+1)*ln(x^2))^2,x,method=_RETURNVERBOSE)

[Out]

2*I*ln(2)/x/(Pi*csgn(I*(exp(3+x)-1/2)*(Pi*csgn(I*x^2)^3+4*I*ln(x)+Pi*csgn(I*x)^2*csgn(I*x^2)-2*Pi*csgn(I*x)*cs
gn(I*x^2)^2))*csgn((exp(3+x)-1/2)*(Pi*csgn(I*x^2)^3+4*I*ln(x)+Pi*csgn(I*x)^2*csgn(I*x^2)-2*Pi*csgn(I*x)*csgn(I
*x^2)^2))+Pi*csgn((exp(3+x)-1/2)*(Pi*csgn(I*x^2)^3+4*I*ln(x)+Pi*csgn(I*x)^2*csgn(I*x^2)-2*Pi*csgn(I*x)*csgn(I*
x^2)^2))^2+Pi*csgn(I*(exp(3+x)-1/2))*csgn(I*(Pi*csgn(I*x^2)^3+4*I*ln(x)+Pi*csgn(I*x)^2*csgn(I*x^2)-2*Pi*csgn(I
*x)*csgn(I*x^2)^2))*csgn(I*(exp(3+x)-1/2)*(Pi*csgn(I*x^2)^3+4*I*ln(x)+Pi*csgn(I*x)^2*csgn(I*x^2)-2*Pi*csgn(I*x
)*csgn(I*x^2)^2))-Pi*csgn(I*(exp(3+x)-1/2))*csgn(I*(exp(3+x)-1/2)*(Pi*csgn(I*x^2)^3+4*I*ln(x)+Pi*csgn(I*x)^2*c
sgn(I*x^2)-2*Pi*csgn(I*x)*csgn(I*x^2)^2))^2-Pi*csgn(I*(Pi*csgn(I*x^2)^3+4*I*ln(x)+Pi*csgn(I*x)^2*csgn(I*x^2)-2
*Pi*csgn(I*x)*csgn(I*x^2)^2))*csgn(I*(exp(3+x)-1/2)*(Pi*csgn(I*x^2)^3+4*I*ln(x)+Pi*csgn(I*x)^2*csgn(I*x^2)-2*P
i*csgn(I*x)*csgn(I*x^2)^2))^2+Pi*csgn(I*(exp(3+x)-1/2)*(Pi*csgn(I*x^2)^3+4*I*ln(x)+Pi*csgn(I*x)^2*csgn(I*x^2)-
2*Pi*csgn(I*x)*csgn(I*x^2)^2))^3-Pi*csgn(I*(exp(3+x)-1/2)*(Pi*csgn(I*x^2)^3+4*I*ln(x)+Pi*csgn(I*x)^2*csgn(I*x^
2)-2*Pi*csgn(I*x)*csgn(I*x^2)^2))*csgn((exp(3+x)-1/2)*(Pi*csgn(I*x^2)^3+4*I*ln(x)+Pi*csgn(I*x)^2*csgn(I*x^2)-2
*Pi*csgn(I*x)*csgn(I*x^2)^2))^2-Pi*csgn((exp(3+x)-1/2)*(Pi*csgn(I*x^2)^3+4*I*ln(x)+Pi*csgn(I*x)^2*csgn(I*x^2)-
2*Pi*csgn(I*x)*csgn(I*x^2)^2))^3-Pi+2*I*ln(exp(3+x)-1/2)+2*I*ln(Pi*csgn(I*x^2)^3+4*I*ln(x)+Pi*csgn(I*x)^2*csgn
(I*x^2)-2*Pi*csgn(I*x)*csgn(I*x^2)^2))

________________________________________________________________________________________

maxima [C]  time = 0.51, size = 30, normalized size = 1.25 log(2)(iπ+log(2))x+xlog(2e(x+3)1)+xlog(log(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*log(2)*exp(3+x)+log(2))*log(x^2)*log((-2*exp(3+x)+1)*log(x^2))-2*x*log(2)*exp(3+x)*log(x^2)-4*l
og(2)*exp(3+x)+2*log(2))/(2*x^2*exp(3+x)-x^2)/log(x^2)/log((-2*exp(3+x)+1)*log(x^2))^2,x, algorithm="maxima")

[Out]

log(2)/((I*pi + log(2))*x + x*log(2*e^(x + 3) - 1) + x*log(log(x)))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.04 2ln(2)4ex+3ln(2)+ln(ln(x2)(2ex+31))ln(x2)(ln(2)2ex+3ln(2))2xln(x2)ex+3ln(2)ln(ln(x2)(2ex+31))2ln(x2)(2x2ex+3x2)dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*log(2) - 4*exp(x + 3)*log(2) + log(-log(x^2)*(2*exp(x + 3) - 1))*log(x^2)*(log(2) - 2*exp(x + 3)*log(2)
) - 2*x*log(x^2)*exp(x + 3)*log(2))/(log(-log(x^2)*(2*exp(x + 3) - 1))^2*log(x^2)*(2*x^2*exp(x + 3) - x^2)),x)

[Out]

int((2*log(2) - 4*exp(x + 3)*log(2) + log(-log(x^2)*(2*exp(x + 3) - 1))*log(x^2)*(log(2) - 2*exp(x + 3)*log(2)
) - 2*x*log(x^2)*exp(x + 3)*log(2))/(log(-log(x^2)*(2*exp(x + 3) - 1))^2*log(x^2)*(2*x^2*exp(x + 3) - x^2)), x
)

________________________________________________________________________________________

sympy [A]  time = 0.56, size = 19, normalized size = 0.79 log(2)xlog((12ex+3)log(x2))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*ln(2)*exp(3+x)+ln(2))*ln(x**2)*ln((-2*exp(3+x)+1)*ln(x**2))-2*x*ln(2)*exp(3+x)*ln(x**2)-4*ln(2)
*exp(3+x)+2*ln(2))/(2*x**2*exp(3+x)-x**2)/ln(x**2)/ln((-2*exp(3+x)+1)*ln(x**2))**2,x)

[Out]

log(2)/(x*log((1 - 2*exp(x + 3))*log(x**2)))

________________________________________________________________________________________