Optimal. Leaf size=22 \[ -x-x^2+\log \left (\frac {8}{3}-e^3 x^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 20, normalized size of antiderivative = 0.91, number of steps used = 3, number of rules used = 2, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.056, Rules used = {1810, 260} \begin {gather*} -x^2+\log \left (8-3 e^3 x^2\right )-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 260
Rule 1810
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-1-2 x+\frac {6 e^3 x}{-8+3 e^3 x^2}\right ) \, dx\\ &=-x-x^2+\left (6 e^3\right ) \int \frac {x}{-8+3 e^3 x^2} \, dx\\ &=-x-x^2+\log \left (8-3 e^3 x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 20, normalized size = 0.91 \begin {gather*} -x-x^2+\log \left (8-3 e^3 x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 19, normalized size = 0.86 \begin {gather*} -x^{2} - x + \log \left (3 \, x^{2} e^{3} - 8\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 27, normalized size = 1.23 \begin {gather*} -{\left (x^{2} e^{6} + x e^{6}\right )} e^{\left (-6\right )} + \log \left ({\left | 3 \, x^{2} e^{3} - 8 \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 20, normalized size = 0.91
method | result | size |
default | \(-x^{2}-x +\ln \left (3 x^{2} {\mathrm e}^{3}-8\right )\) | \(20\) |
norman | \(-x^{2}-x +\ln \left (3 x^{2} {\mathrm e}^{3}-8\right )\) | \(20\) |
risch | \(-x^{2}-x +\ln \left (3 x^{2} {\mathrm e}^{3}-8\right )\) | \(20\) |
meijerg | \(-\frac {2 \sqrt {3}\, \sqrt {2}\, {\mathrm e}^{-\frac {3}{2}} \arctanh \left (\frac {x \sqrt {3}\, \sqrt {2}\, {\mathrm e}^{\frac {3}{2}}}{4}\right )}{3}+\frac {8 \,{\mathrm e}^{-3} \left (-\frac {3 x^{2} {\mathrm e}^{3}}{8}-\ln \left (1-\frac {3 x^{2} {\mathrm e}^{3}}{8}\right )\right )}{3}+\frac {i \sqrt {6}\, {\mathrm e}^{-\frac {3}{2}} \left (\frac {i \sqrt {6}\, x \,{\mathrm e}^{\frac {3}{2}}}{2}-2 i \arctanh \left (\frac {x \sqrt {3}\, \sqrt {2}\, {\mathrm e}^{\frac {3}{2}}}{4}\right )\right )}{3}+\frac {\left (6 \,{\mathrm e}^{3}+16\right ) {\mathrm e}^{-3} \ln \left (1-\frac {3 x^{2} {\mathrm e}^{3}}{8}\right )}{6}\) | \(101\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 19, normalized size = 0.86 \begin {gather*} -x^{2} - x + \log \left (3 \, x^{2} e^{3} - 8\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.11, size = 18, normalized size = 0.82 \begin {gather*} \ln \left (x^2-\frac {8\,{\mathrm {e}}^{-3}}{3}\right )-x-x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 15, normalized size = 0.68 \begin {gather*} - x^{2} - x + \log {\left (3 x^{2} e^{3} - 8 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________