3.41.49 8+16x+e3(6x3x26x3)8+3e3x2dx

Optimal. Leaf size=22 xx2+log(83e3x2)

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 20, normalized size of antiderivative = 0.91, number of steps used = 3, number of rules used = 2, integrand size = 36, number of rulesintegrand size = 0.056, Rules used = {1810, 260} x2+log(83e3x2)x

Antiderivative was successfully verified.

[In]

Int[(8 + 16*x + E^3*(6*x - 3*x^2 - 6*x^3))/(-8 + 3*E^3*x^2),x]

[Out]

-x - x^2 + Log[8 - 3*E^3*x^2]

Rule 260

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 1810

Int[(Pq_)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[Pq*(a + b*x^2)^p, x], x] /; FreeQ[{a,
b}, x] && PolyQ[Pq, x] && IGtQ[p, -2]

Rubi steps

integral=(12x+6e3x8+3e3x2)dx=xx2+(6e3)x8+3e3x2dx=xx2+log(83e3x2)

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 20, normalized size = 0.91 xx2+log(83e3x2)

Antiderivative was successfully verified.

[In]

Integrate[(8 + 16*x + E^3*(6*x - 3*x^2 - 6*x^3))/(-8 + 3*E^3*x^2),x]

[Out]

-x - x^2 + Log[8 - 3*E^3*x^2]

________________________________________________________________________________________

fricas [A]  time = 0.50, size = 19, normalized size = 0.86 x2x+log(3x2e38)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-6*x^3-3*x^2+6*x)*exp(3)+16*x+8)/(3*x^2*exp(3)-8),x, algorithm="fricas")

[Out]

-x^2 - x + log(3*x^2*e^3 - 8)

________________________________________________________________________________________

giac [A]  time = 0.22, size = 27, normalized size = 1.23 (x2e6+xe6)e(6)+log(|3x2e38|)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-6*x^3-3*x^2+6*x)*exp(3)+16*x+8)/(3*x^2*exp(3)-8),x, algorithm="giac")

[Out]

-(x^2*e^6 + x*e^6)*e^(-6) + log(abs(3*x^2*e^3 - 8))

________________________________________________________________________________________

maple [A]  time = 0.09, size = 20, normalized size = 0.91




method result size



default x2x+ln(3x2e38) 20
norman x2x+ln(3x2e38) 20
risch x2x+ln(3x2e38) 20
meijerg 232e32arctanh(x32e324)3+8e3(3x2e38ln(13x2e38))3+i6e32(i6xe3222iarctanh(x32e324))3+(6e3+16)e3ln(13x2e38)6 101



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-6*x^3-3*x^2+6*x)*exp(3)+16*x+8)/(3*x^2*exp(3)-8),x,method=_RETURNVERBOSE)

[Out]

-x^2-x+ln(3*x^2*exp(3)-8)

________________________________________________________________________________________

maxima [A]  time = 0.36, size = 19, normalized size = 0.86 x2x+log(3x2e38)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-6*x^3-3*x^2+6*x)*exp(3)+16*x+8)/(3*x^2*exp(3)-8),x, algorithm="maxima")

[Out]

-x^2 - x + log(3*x^2*e^3 - 8)

________________________________________________________________________________________

mupad [B]  time = 0.11, size = 18, normalized size = 0.82 ln(x28e33)xx2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((16*x - exp(3)*(3*x^2 - 6*x + 6*x^3) + 8)/(3*x^2*exp(3) - 8),x)

[Out]

log(x^2 - (8*exp(-3))/3) - x - x^2

________________________________________________________________________________________

sympy [A]  time = 0.14, size = 15, normalized size = 0.68 x2x+log(3x2e38)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-6*x**3-3*x**2+6*x)*exp(3)+16*x+8)/(3*x**2*exp(3)-8),x)

[Out]

-x**2 - x + log(3*x**2*exp(3) - 8)

________________________________________________________________________________________