3.41.54
Optimal. Leaf size=28
________________________________________________________________________________________
Rubi [B] time = 0.49, antiderivative size = 62, normalized size of antiderivative = 2.21,
number of steps used = 17, number of rules used = 5, integrand size = 78, = 0.064, Rules used
= {6688, 2194, 6742, 2177, 2178}
Antiderivative was successfully verified.
[In]
Int[(E^(2*x)*(8 - 20*x + 24*x^2 - 14*x^3 + 2*x^4) + E^(3 + x)*(-5184*x^3 + 3888*x^4 - 972*x^5 + 81*x^6))/(-518
4*x^3 + 3888*x^4 - 972*x^5 + 81*x^6),x]
[Out]
E^(3 + x) + E^(2*x)/(144*(4 - x)^2) - E^(2*x)/(864*(4 - x)) + E^(2*x)/(1296*x^2) - E^(2*x)/(864*x)
Rule 2177
Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[((c + d*x)^(m
+ 1)*(b*F^(g*(e + f*x)))^n)/(d*(m + 1)), x] - Dist[(f*g*n*Log[F])/(d*(m + 1)), Int[(c + d*x)^(m + 1)*(b*F^(g*
(e + f*x)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && LtQ[m, -1] && IntegerQ[2*m] && !$UseGamma ===
True
Rule 2178
Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] && !$UseGamma === True
Rule 2194
Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]
Rule 6688
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 38, normalized size = 1.36
Antiderivative was successfully verified.
[In]
Integrate[(E^(2*x)*(8 - 20*x + 24*x^2 - 14*x^3 + 2*x^4) + E^(3 + x)*(-5184*x^3 + 3888*x^4 - 972*x^5 + 81*x^6))
/(-5184*x^3 + 3888*x^4 - 972*x^5 + 81*x^6),x]
[Out]
(E^x*(E^x*(-1 + x)^2 + 81*E^3*(-4 + x)^2*x^2))/(81*(-4 + x)^2*x^2)
________________________________________________________________________________________
fricas [B] time = 0.58, size = 56, normalized size = 2.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((81*x^6-972*x^5+3888*x^4-5184*x^3)*exp(3+x)+(2*x^4-14*x^3+24*x^2-20*x+8)*exp(x)^2)/(81*x^6-972*x^5+
3888*x^4-5184*x^3),x, algorithm="fricas")
[Out]
1/81*((x^2 - 2*x + 1)*e^(2*x + 6) + 81*(x^4 - 8*x^3 + 16*x^2)*e^(x + 9))*e^(-6)/(x^4 - 8*x^3 + 16*x^2)
________________________________________________________________________________________
giac [B] time = 0.16, size = 65, normalized size = 2.32
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((81*x^6-972*x^5+3888*x^4-5184*x^3)*exp(3+x)+(2*x^4-14*x^3+24*x^2-20*x+8)*exp(x)^2)/(81*x^6-972*x^5+
3888*x^4-5184*x^3),x, algorithm="giac")
[Out]
1/81*(81*x^4*e^(x + 3) - 648*x^3*e^(x + 3) + x^2*e^(2*x) + 1296*x^2*e^(x + 3) - 2*x*e^(2*x) + e^(2*x))/(x^4 -
8*x^3 + 16*x^2)
________________________________________________________________________________________
maple [A] time = 0.09, size = 28, normalized size = 1.00
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
norman |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((81*x^6-972*x^5+3888*x^4-5184*x^3)*exp(3+x)+(2*x^4-14*x^3+24*x^2-20*x+8)*exp(x)^2)/(81*x^6-972*x^5+3888*x
^4-5184*x^3),x,method=_RETURNVERBOSE)
[Out]
1/81*(x^2-2*x+1)/(x-4)^2/x^2*exp(2*x)+exp(3+x)
________________________________________________________________________________________
maxima [B] time = 0.40, size = 57, normalized size = 2.04
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((81*x^6-972*x^5+3888*x^4-5184*x^3)*exp(3+x)+(2*x^4-14*x^3+24*x^2-20*x+8)*exp(x)^2)/(81*x^6-972*x^5+
3888*x^4-5184*x^3),x, algorithm="maxima")
[Out]
1/81*((x^2 - 2*x + 1)*e^(2*x) + 81*(x^4*e^3 - 8*x^3*e^3 + 16*x^2*e^3)*e^x)/(x^4 - 8*x^3 + 16*x^2)
________________________________________________________________________________________
mupad [B] time = 3.21, size = 55, normalized size = 1.96
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(exp(2*x)*(24*x^2 - 20*x - 14*x^3 + 2*x^4 + 8) - exp(x + 3)*(5184*x^3 - 3888*x^4 + 972*x^5 - 81*x^6))/(51
84*x^3 - 3888*x^4 + 972*x^5 - 81*x^6),x)
[Out]
(exp(x - 3)*(exp(x + 3) - 2*x*exp(x + 3) + x^2*exp(x + 3) + 1296*x^2*exp(6) - 648*x^3*exp(6) + 81*x^4*exp(6)))
/(81*x^2*(x - 4)^2)
________________________________________________________________________________________
sympy [B] time = 0.19, size = 61, normalized size = 2.18
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((81*x**6-972*x**5+3888*x**4-5184*x**3)*exp(3+x)+(2*x**4-14*x**3+24*x**2-20*x+8)*exp(x)**2)/(81*x**6
-972*x**5+3888*x**4-5184*x**3),x)
[Out]
((x**2 - 2*x + 1)*exp(2*x) + (81*x**4*exp(3) - 648*x**3*exp(3) + 1296*x**2*exp(3))*sqrt(exp(2*x)))/(81*x**4 -
648*x**3 + 1296*x**2)
________________________________________________________________________________________