3.41.54 e2x(820x+24x214x3+2x4)+e3+x(5184x3+3888x4972x5+81x6)5184x3+3888x4972x5+81x6dx

Optimal. Leaf size=28 e3+x+e2x(1+x)281(4+x)2x2

________________________________________________________________________________________

Rubi [B]  time = 0.49, antiderivative size = 62, normalized size of antiderivative = 2.21, number of steps used = 17, number of rules used = 5, integrand size = 78, number of rulesintegrand size = 0.064, Rules used = {6688, 2194, 6742, 2177, 2178} e2x1296x2+ex+3e2x864xe2x864(4x)+e2x144(4x)2

Antiderivative was successfully verified.

[In]

Int[(E^(2*x)*(8 - 20*x + 24*x^2 - 14*x^3 + 2*x^4) + E^(3 + x)*(-5184*x^3 + 3888*x^4 - 972*x^5 + 81*x^6))/(-518
4*x^3 + 3888*x^4 - 972*x^5 + 81*x^6),x]

[Out]

E^(3 + x) + E^(2*x)/(144*(4 - x)^2) - E^(2*x)/(864*(4 - x)) + E^(2*x)/(1296*x^2) - E^(2*x)/(864*x)

Rule 2177

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[((c + d*x)^(m
 + 1)*(b*F^(g*(e + f*x)))^n)/(d*(m + 1)), x] - Dist[(f*g*n*Log[F])/(d*(m + 1)), Int[(c + d*x)^(m + 1)*(b*F^(g*
(e + f*x)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && LtQ[m, -1] && IntegerQ[2*m] &&  !$UseGamma ===
True

Rule 2178

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=(e3+x+2e2x(410x+12x27x3+x4)81(4+x)3x3)dx=281e2x(410x+12x27x3+x4)(4+x)3x3dx+e3+xdx=e3+x+281(9e2x16(4+x)3+33e2x64(4+x)2+3e2x32(4+x)e2x16x3+7e2x64x23e2x32x)dx=e3+x1648e2xx3dx+1432e2x4+xdx1432e2xxdx+7e2xx2dx2592+11864e2x(4+x)2dx172e2x(4+x)3dx=e3+x+e2x144(4x)2+11e2x864(4x)+e2x1296x27e2x2592x+1432e8Ei(2(4x))Ei(2x)4321648e2xx2dx+7e2xxdx1296172e2x(4+x)2dx+11432e2x4+xdx=e3+x+e2x144(4x)2e2x864(4x)+e2x1296x2e2x864x+136e8Ei(2(4x))+Ei(2x)3241324e2xxdx136e2x4+xdx=e3+x+e2x144(4x)2e2x864(4x)+e2x1296x2e2x864x

________________________________________________________________________________________

Mathematica [A]  time = 0.14, size = 38, normalized size = 1.36 ex(ex(1+x)2+81e3(4+x)2x2)81(4+x)2x2

Antiderivative was successfully verified.

[In]

Integrate[(E^(2*x)*(8 - 20*x + 24*x^2 - 14*x^3 + 2*x^4) + E^(3 + x)*(-5184*x^3 + 3888*x^4 - 972*x^5 + 81*x^6))
/(-5184*x^3 + 3888*x^4 - 972*x^5 + 81*x^6),x]

[Out]

(E^x*(E^x*(-1 + x)^2 + 81*E^3*(-4 + x)^2*x^2))/(81*(-4 + x)^2*x^2)

________________________________________________________________________________________

fricas [B]  time = 0.58, size = 56, normalized size = 2.00 ((x22x+1)e(2x+6)+81(x48x3+16x2)e(x+9))e(6)81(x48x3+16x2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((81*x^6-972*x^5+3888*x^4-5184*x^3)*exp(3+x)+(2*x^4-14*x^3+24*x^2-20*x+8)*exp(x)^2)/(81*x^6-972*x^5+
3888*x^4-5184*x^3),x, algorithm="fricas")

[Out]

1/81*((x^2 - 2*x + 1)*e^(2*x + 6) + 81*(x^4 - 8*x^3 + 16*x^2)*e^(x + 9))*e^(-6)/(x^4 - 8*x^3 + 16*x^2)

________________________________________________________________________________________

giac [B]  time = 0.16, size = 65, normalized size = 2.32 81x4e(x+3)648x3e(x+3)+x2e(2x)+1296x2e(x+3)2xe(2x)+e(2x)81(x48x3+16x2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((81*x^6-972*x^5+3888*x^4-5184*x^3)*exp(3+x)+(2*x^4-14*x^3+24*x^2-20*x+8)*exp(x)^2)/(81*x^6-972*x^5+
3888*x^4-5184*x^3),x, algorithm="giac")

[Out]

1/81*(81*x^4*e^(x + 3) - 648*x^3*e^(x + 3) + x^2*e^(2*x) + 1296*x^2*e^(x + 3) - 2*x*e^(2*x) + e^(2*x))/(x^4 -
8*x^3 + 16*x^2)

________________________________________________________________________________________

maple [A]  time = 0.09, size = 28, normalized size = 1.00




method result size



risch (x22x+1)e2x81(x4)2x2+e3+x 28
norman exe3x4+e2x812xe2x81+e2xx281+16x2e3ex8exe3x3(x4)2x2 59
default e2x144(x4)2+e2x864x3456e2x864x+e2x1296x264e3(ex2(x4)2ex2(x4)e4\expIntegralEi(1,x+4)2)+48e3(2ex(x4)23exx43e4\expIntegralEi(1,x+4))12e3(8ex(x4)216exx417e4\expIntegralEi(1,x+4))+e3(ex32ex(x4)280exx492e4\expIntegralEi(1,x+4)) 179



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((81*x^6-972*x^5+3888*x^4-5184*x^3)*exp(3+x)+(2*x^4-14*x^3+24*x^2-20*x+8)*exp(x)^2)/(81*x^6-972*x^5+3888*x
^4-5184*x^3),x,method=_RETURNVERBOSE)

[Out]

1/81*(x^2-2*x+1)/(x-4)^2/x^2*exp(2*x)+exp(3+x)

________________________________________________________________________________________

maxima [B]  time = 0.40, size = 57, normalized size = 2.04 (x22x+1)e(2x)+81(x4e38x3e3+16x2e3)ex81(x48x3+16x2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((81*x^6-972*x^5+3888*x^4-5184*x^3)*exp(3+x)+(2*x^4-14*x^3+24*x^2-20*x+8)*exp(x)^2)/(81*x^6-972*x^5+
3888*x^4-5184*x^3),x, algorithm="maxima")

[Out]

1/81*((x^2 - 2*x + 1)*e^(2*x) + 81*(x^4*e^3 - 8*x^3*e^3 + 16*x^2*e^3)*e^x)/(x^4 - 8*x^3 + 16*x^2)

________________________________________________________________________________________

mupad [B]  time = 3.21, size = 55, normalized size = 1.96 ex3(ex+32xex+3+x2ex+3+1296x2e6648x3e6+81x4e6)81x2(x4)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(2*x)*(24*x^2 - 20*x - 14*x^3 + 2*x^4 + 8) - exp(x + 3)*(5184*x^3 - 3888*x^4 + 972*x^5 - 81*x^6))/(51
84*x^3 - 3888*x^4 + 972*x^5 - 81*x^6),x)

[Out]

(exp(x - 3)*(exp(x + 3) - 2*x*exp(x + 3) + x^2*exp(x + 3) + 1296*x^2*exp(6) - 648*x^3*exp(6) + 81*x^4*exp(6)))
/(81*x^2*(x - 4)^2)

________________________________________________________________________________________

sympy [B]  time = 0.19, size = 61, normalized size = 2.18 (x22x+1)e2x+(81x4e3648x3e3+1296x2e3)e2x81x4648x3+1296x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((81*x**6-972*x**5+3888*x**4-5184*x**3)*exp(3+x)+(2*x**4-14*x**3+24*x**2-20*x+8)*exp(x)**2)/(81*x**6
-972*x**5+3888*x**4-5184*x**3),x)

[Out]

((x**2 - 2*x + 1)*exp(2*x) + (81*x**4*exp(3) - 648*x**3*exp(3) + 1296*x**2*exp(3))*sqrt(exp(2*x)))/(81*x**4 -
648*x**3 + 1296*x**2)

________________________________________________________________________________________