3.41.53 (e4x(36x336x4)+e2x(72x+72x2+e(12x+12x2)))dx

Optimal. Leaf size=17 (6+e3e2xx2)2

________________________________________________________________________________________

Rubi [A]  time = 0.22, antiderivative size = 33, normalized size of antiderivative = 1.94, number of steps used = 27, number of rules used = 4, integrand size = 44, number of rulesintegrand size = 0.091, Rules used = {1593, 2196, 2176, 2194} 9e4xx4+36e2xx2+6e2x+1x2

Antiderivative was successfully verified.

[In]

Int[E^(4*x)*(-36*x^3 - 36*x^4) + E^(2*x)*(72*x + 72*x^2 + E*(12*x + 12*x^2)),x]

[Out]

36*E^(2*x)*x^2 + 6*E^(1 + 2*x)*x^2 - 9*E^(4*x)*x^4

Rule 1593

Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^(q - p))^n, x] /; F
reeQ[{a, b, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rule 2176

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2196

Int[(F_)^((c_.)*(v_))*(u_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), u, x], x] /; FreeQ[{F, c
}, x] && PolynomialQ[u, x] && LinearQ[v, x] &&  !$UseGamma === True

Rubi steps

integral=e4x(36x336x4)dx+e2x(72x+72x2+e(12x+12x2))dx=e4x(3636x)x3dx+(72e2xx+72e2xx2+12e1+2xx(1+x))dx=12e1+2xx(1+x)dx+72e2xxdx+72e2xx2dx+(36e4xx336e4xx4)dx=36e2xx+36e2xx2+12(e1+2xx+e1+2xx2)dx36e2xdx36e4xx3dx36e4xx4dx72e2xxdx=18e2x+36e2xx29e4xx39e4xx4+12e1+2xxdx+12e1+2xx2dx+27e4xx2dx+36e2xdx+36e4xx3dx=6e1+2xx+36e2xx2+274e4xx2+6e1+2xx29e4xx46e1+2xdx12e1+2xxdx272e4xxdx27e4xx2dx=3e1+2x278e4xx+36e2xx2+6e1+2xx29e4xx4+278e4xdx+6e1+2xdx+272e4xxdx=27e4x32+36e2xx2+6e1+2xx29e4xx4278e4xdx=36e2xx2+6e1+2xx29e4xx4

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 19, normalized size = 1.12 (6e+3e2xx2)2

Antiderivative was successfully verified.

[In]

Integrate[E^(4*x)*(-36*x^3 - 36*x^4) + E^(2*x)*(72*x + 72*x^2 + E*(12*x + 12*x^2)),x]

[Out]

-(-6 - E + 3*E^(2*x)*x^2)^2

________________________________________________________________________________________

fricas [A]  time = 0.65, size = 28, normalized size = 1.65 9x4e(4x)+6(x2e+6x2)e(2x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-36*x^4-36*x^3)*exp(x)^4+((12*x^2+12*x)*exp(1)+72*x^2+72*x)*exp(x)^2,x, algorithm="fricas")

[Out]

-9*x^4*e^(4*x) + 6*(x^2*e + 6*x^2)*e^(2*x)

________________________________________________________________________________________

giac [A]  time = 0.16, size = 30, normalized size = 1.76 9x4e(4x)+36x2e(2x)+6x2e(2x+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-36*x^4-36*x^3)*exp(x)^4+((12*x^2+12*x)*exp(1)+72*x^2+72*x)*exp(x)^2,x, algorithm="giac")

[Out]

-9*x^4*e^(4*x) + 36*x^2*e^(2*x) + 6*x^2*e^(2*x + 1)

________________________________________________________________________________________

maple [A]  time = 0.05, size = 24, normalized size = 1.41




method result size



risch 9x4e4x+6(e+6)x2e2x 24
norman (6e+36)x2e2x9x4e4x 25
default 36e2xx2+12e(e2xx22xe2x2+e2x4)+12e(xe2x2e2x4)9x4e4x 65
meijerg 9(1280x41280x3+960x2480x+120)e4x1280+9(256x3+192x296x+24)e4x2563(e+6)(2(12x212x+6)e2x3)2+3(e+6)(1(4x+2)e2x2) 92



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-36*x^4-36*x^3)*exp(x)^4+((12*x^2+12*x)*exp(1)+72*x^2+72*x)*exp(x)^2,x,method=_RETURNVERBOSE)

[Out]

-9*x^4*exp(4*x)+6*(exp(1)+6)*x^2*exp(2*x)

________________________________________________________________________________________

maxima [B]  time = 0.37, size = 74, normalized size = 4.35 9x4e(4x)+3(2x2e2xe+e)e(2x)+18(2x22x+1)e(2x)+3(2xee)e(2x)+18(2x1)e(2x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-36*x^4-36*x^3)*exp(x)^4+((12*x^2+12*x)*exp(1)+72*x^2+72*x)*exp(x)^2,x, algorithm="maxima")

[Out]

-9*x^4*e^(4*x) + 3*(2*x^2*e - 2*x*e + e)*e^(2*x) + 18*(2*x^2 - 2*x + 1)*e^(2*x) + 3*(2*x*e - e)*e^(2*x) + 18*(
2*x - 1)*e^(2*x)

________________________________________________________________________________________

mupad [B]  time = 0.07, size = 24, normalized size = 1.41 3x2e2x(2e3x2e2x+12)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(2*x)*(72*x + exp(1)*(12*x + 12*x^2) + 72*x^2) - exp(4*x)*(36*x^3 + 36*x^4),x)

[Out]

3*x^2*exp(2*x)*(2*exp(1) - 3*x^2*exp(2*x) + 12)

________________________________________________________________________________________

sympy [A]  time = 0.14, size = 27, normalized size = 1.59 9x4e4x+(6ex2+36x2)e2x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-36*x**4-36*x**3)*exp(x)**4+((12*x**2+12*x)*exp(1)+72*x**2+72*x)*exp(x)**2,x)

[Out]

-9*x**4*exp(4*x) + (6*E*x**2 + 36*x**2)*exp(2*x)

________________________________________________________________________________________