Optimal. Leaf size=26 \[ \left (e^{2+x} x+\frac {2 x \left (x+x^2\right )}{\log \left (e^3+x\right )}\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 9.84, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-8 x^4-16 x^5-8 x^6+\left (16 x^4+40 x^5+24 x^6+e^{2+x} \left (-4 x^3-4 x^4\right )+e^3 \left (16 x^3+40 x^4+24 x^5\right )\right ) \log \left (e^3+x\right )+e^x \left (e^5 \left (12 x^2+20 x^3+4 x^4\right )+e^2 \left (12 x^3+20 x^4+4 x^5\right )\right ) \log ^2\left (e^3+x\right )+e^{2 x} \left (e^7 \left (2 x+2 x^2\right )+e^4 \left (2 x^2+2 x^3\right )\right ) \log ^3\left (e^3+x\right )}{\left (e^3+x\right ) \log ^3\left (e^3+x\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int 2 x \left (e^{4+2 x} (1+x)-\frac {4 x^3 (1+x)^2}{\left (e^3+x\right ) \log ^3\left (e^3+x\right )}+\frac {2 x^2 (1+x) \left (-e^{2+x}+2 x (2+3 x)+e^3 (4+6 x)\right )}{\left (e^3+x\right ) \log ^2\left (e^3+x\right )}+\frac {2 e^{2+x} x \left (3+5 x+x^2\right )}{\log \left (e^3+x\right )}\right ) \, dx\\ &=2 \int x \left (e^{4+2 x} (1+x)-\frac {4 x^3 (1+x)^2}{\left (e^3+x\right ) \log ^3\left (e^3+x\right )}+\frac {2 x^2 (1+x) \left (-e^{2+x}+2 x (2+3 x)+e^3 (4+6 x)\right )}{\left (e^3+x\right ) \log ^2\left (e^3+x\right )}+\frac {2 e^{2+x} x \left (3+5 x+x^2\right )}{\log \left (e^3+x\right )}\right ) \, dx\\ &=2 \int \left (e^{4+2 x} x (1+x)+\frac {4 x^3 (1+x) \left (-x-x^2+2 e^3 \log \left (e^3+x\right )+2 \left (1+\frac {3 e^3}{2}\right ) x \log \left (e^3+x\right )+3 x^2 \log \left (e^3+x\right )\right )}{\left (e^3+x\right ) \log ^3\left (e^3+x\right )}+\frac {2 e^{2+x} x^2 \left (-x-x^2+3 e^3 \log \left (e^3+x\right )+3 \left (1+\frac {5 e^3}{3}\right ) x \log \left (e^3+x\right )+5 \left (1+\frac {e^3}{5}\right ) x^2 \log \left (e^3+x\right )+x^3 \log \left (e^3+x\right )\right )}{\left (e^3+x\right ) \log ^2\left (e^3+x\right )}\right ) \, dx\\ &=2 \int e^{4+2 x} x (1+x) \, dx+4 \int \frac {e^{2+x} x^2 \left (-x-x^2+3 e^3 \log \left (e^3+x\right )+3 \left (1+\frac {5 e^3}{3}\right ) x \log \left (e^3+x\right )+5 \left (1+\frac {e^3}{5}\right ) x^2 \log \left (e^3+x\right )+x^3 \log \left (e^3+x\right )\right )}{\left (e^3+x\right ) \log ^2\left (e^3+x\right )} \, dx+8 \int \frac {x^3 (1+x) \left (-x-x^2+2 e^3 \log \left (e^3+x\right )+2 \left (1+\frac {3 e^3}{2}\right ) x \log \left (e^3+x\right )+3 x^2 \log \left (e^3+x\right )\right )}{\left (e^3+x\right ) \log ^3\left (e^3+x\right )} \, dx\\ &=2 \int \left (e^{4+2 x} x+e^{4+2 x} x^2\right ) \, dx+4 \int \frac {e^{2+x} x^2 \left (-x (1+x)+\left (e^3+x\right ) \left (3+5 x+x^2\right ) \log \left (e^3+x\right )\right )}{\left (e^3+x\right ) \log ^2\left (e^3+x\right )} \, dx+8 \int \frac {x^3 (1+x) \left (-x (1+x)+\left (e^3+x\right ) (2+3 x) \log \left (e^3+x\right )\right )}{\left (e^3+x\right ) \log ^3\left (e^3+x\right )} \, dx\\ &=2 \int e^{4+2 x} x \, dx+2 \int e^{4+2 x} x^2 \, dx+4 \int \left (-\frac {e^{2+x} x^3 (1+x)}{\left (e^3+x\right ) \log ^2\left (e^3+x\right )}+\frac {e^{2+x} x^2 \left (3+5 x+x^2\right )}{\log \left (e^3+x\right )}\right ) \, dx+8 \int \left (-\frac {x^4 (1+x)^2}{\left (e^3+x\right ) \log ^3\left (e^3+x\right )}+\frac {x^3 (1+x) (2+3 x)}{\log ^2\left (e^3+x\right )}\right ) \, dx\\ &=e^{4+2 x} x+e^{4+2 x} x^2-2 \int e^{4+2 x} x \, dx-4 \int \frac {e^{2+x} x^3 (1+x)}{\left (e^3+x\right ) \log ^2\left (e^3+x\right )} \, dx+4 \int \frac {e^{2+x} x^2 \left (3+5 x+x^2\right )}{\log \left (e^3+x\right )} \, dx-8 \int \frac {x^4 (1+x)^2}{\left (e^3+x\right ) \log ^3\left (e^3+x\right )} \, dx+8 \int \frac {x^3 (1+x) (2+3 x)}{\log ^2\left (e^3+x\right )} \, dx-\int e^{4+2 x} \, dx\\ &=-\frac {1}{2} e^{4+2 x}+e^{4+2 x} x^2-4 \int \left (\frac {e^{2+x} \left (e^6-e^9\right )}{\log ^2\left (e^3+x\right )}+\frac {e^{5+x} \left (-1+e^3\right ) x}{\log ^2\left (e^3+x\right )}-\frac {e^{2+x} \left (-1+e^3\right ) x^2}{\log ^2\left (e^3+x\right )}+\frac {e^{2+x} x^3}{\log ^2\left (e^3+x\right )}+\frac {e^{11+x} \left (-1+e^3\right )}{\left (e^3+x\right ) \log ^2\left (e^3+x\right )}\right ) \, dx+4 \int \left (\frac {e^{8+x} \left (3-5 e^3+e^6\right )}{\log \left (e^3+x\right )}+\frac {e^{2+x} \left (-6 e^3+15 e^6-4 e^9\right ) \left (e^3+x\right )}{\log \left (e^3+x\right )}+\frac {3 e^{2+x} \left (1-5 e^3+2 e^6\right ) \left (e^3+x\right )^2}{\log \left (e^3+x\right )}+\frac {e^{2+x} \left (5-4 e^3\right ) \left (e^3+x\right )^3}{\log \left (e^3+x\right )}+\frac {e^{2+x} \left (e^3+x\right )^4}{\log \left (e^3+x\right )}\right ) \, dx-8 \int \left (-\frac {e^9 \left (-1+e^3\right )^2}{\log ^3\left (e^3+x\right )}+\frac {e^6 \left (-1+e^3\right )^2 x}{\log ^3\left (e^3+x\right )}-\frac {e^3 \left (-1+e^3\right )^2 x^2}{\log ^3\left (e^3+x\right )}+\frac {\left (-1+e^3\right )^2 x^3}{\log ^3\left (e^3+x\right )}-\frac {\left (-2+e^3\right ) x^4}{\log ^3\left (e^3+x\right )}+\frac {x^5}{\log ^3\left (e^3+x\right )}+\frac {e^{12} \left (-1+e^3\right )^2}{\left (e^3+x\right ) \log ^3\left (e^3+x\right )}\right ) \, dx+8 \int \left (-\frac {e^9 \left (2-5 e^3+3 e^6\right )}{\log ^2\left (e^3+x\right )}+\frac {e^6 \left (6-20 e^3+15 e^6\right ) \left (e^3+x\right )}{\log ^2\left (e^3+x\right )}-\frac {6 \left (e^3-5 e^6+5 e^9\right ) \left (e^3+x\right )^2}{\log ^2\left (e^3+x\right )}+\frac {2 \left (1-10 e^3+15 e^6\right ) \left (e^3+x\right )^3}{\log ^2\left (e^3+x\right )}-\frac {5 \left (-1+3 e^3\right ) \left (e^3+x\right )^4}{\log ^2\left (e^3+x\right )}+\frac {3 \left (e^3+x\right )^5}{\log ^2\left (e^3+x\right )}\right ) \, dx+\int e^{4+2 x} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 33, normalized size = 1.27 \begin {gather*} \frac {x^2 \left (2 x (1+x)+e^{2+x} \log \left (e^3+x\right )\right )^2}{\log ^2\left (e^3+x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.62, size = 59, normalized size = 2.27 \begin {gather*} \frac {4 \, x^{6} + 8 \, x^{5} + x^{2} e^{\left (2 \, x + 4\right )} \log \left (x + e^{3}\right )^{2} + 4 \, x^{4} + 4 \, {\left (x^{4} + x^{3}\right )} e^{\left (x + 2\right )} \log \left (x + e^{3}\right )}{\log \left (x + e^{3}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.35, size = 88, normalized size = 3.38 \begin {gather*} \frac {4 \, x^{6} \log \left (x + e^{3}\right ) + 4 \, x^{4} e^{\left (x + 2\right )} \log \left (x + e^{3}\right )^{2} + 8 \, x^{5} \log \left (x + e^{3}\right ) + 4 \, x^{3} e^{\left (x + 2\right )} \log \left (x + e^{3}\right )^{2} + x^{2} e^{\left (2 \, x + 4\right )} \log \left (x + e^{3}\right )^{3} + 4 \, x^{4} \log \left (x + e^{3}\right )}{\log \left (x + e^{3}\right )^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.12, size = 55, normalized size = 2.12
method | result | size |
risch | \(x^{2} {\mathrm e}^{2 x +4}+\frac {4 x^{3} \left (\ln \left ({\mathrm e}^{3}+x \right ) x \,{\mathrm e}^{2+x}+\ln \left ({\mathrm e}^{3}+x \right ) {\mathrm e}^{2+x}+x^{3}+2 x^{2}+x \right )}{\ln \left ({\mathrm e}^{3}+x \right )^{2}}\) | \(55\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.41, size = 63, normalized size = 2.42 \begin {gather*} \frac {4 \, x^{6} + 8 \, x^{5} + x^{2} e^{\left (2 \, x + 4\right )} \log \left (x + e^{3}\right )^{2} + 4 \, x^{4} + 4 \, {\left (x^{4} e^{2} + x^{3} e^{2}\right )} e^{x} \log \left (x + e^{3}\right )}{\log \left (x + e^{3}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.06, size = 79, normalized size = 3.04 \begin {gather*} \frac {4\,x^4}{{\ln \left (x+{\mathrm {e}}^3\right )}^2}+\frac {8\,x^5}{{\ln \left (x+{\mathrm {e}}^3\right )}^2}+\frac {4\,x^6}{{\ln \left (x+{\mathrm {e}}^3\right )}^2}+x^2\,{\mathrm {e}}^{2\,x+4}+\frac {4\,x^3\,{\mathrm {e}}^{x+2}}{\ln \left (x+{\mathrm {e}}^3\right )}+\frac {4\,x^4\,{\mathrm {e}}^{x+2}}{\ln \left (x+{\mathrm {e}}^3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.47, size = 68, normalized size = 2.62 \begin {gather*} \frac {x^{2} e^{4} e^{2 x} \log {\left (x + e^{3} \right )} + \left (4 x^{4} e^{2} + 4 x^{3} e^{2}\right ) e^{x}}{\log {\left (x + e^{3} \right )}} + \frac {4 x^{6} + 8 x^{5} + 4 x^{4}}{\log {\left (x + e^{3} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________