3.41.57 8x416x58x6+(16x4+40x5+24x6+e2+x(4x34x4)+e3(16x3+40x4+24x5))log(e3+x)+ex(e5(12x2+20x3+4x4)+e2(12x3+20x4+4x5))log2(e3+x)+e2x(e7(2x+2x2)+e4(2x2+2x3))log3(e3+x)(e3+x)log3(e3+x)dx

Optimal. Leaf size=26 (e2+xx+2x(x+x2)log(e3+x))2

________________________________________________________________________________________

Rubi [F]  time = 9.84, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 8x416x58x6+(16x4+40x5+24x6+e2+x(4x34x4)+e3(16x3+40x4+24x5))log(e3+x)+ex(e5(12x2+20x3+4x4)+e2(12x3+20x4+4x5))log2(e3+x)+e2x(e7(2x+2x2)+e4(2x2+2x3))log3(e3+x)(e3+x)log3(e3+x)dx

Verification is not applicable to the result.

[In]

Int[(-8*x^4 - 16*x^5 - 8*x^6 + (16*x^4 + 40*x^5 + 24*x^6 + E^(2 + x)*(-4*x^3 - 4*x^4) + E^3*(16*x^3 + 40*x^4 +
 24*x^5))*Log[E^3 + x] + E^x*(E^5*(12*x^2 + 20*x^3 + 4*x^4) + E^2*(12*x^3 + 20*x^4 + 4*x^5))*Log[E^3 + x]^2 +
E^(2*x)*(E^7*(2*x + 2*x^2) + E^4*(2*x^2 + 2*x^3))*Log[E^3 + x]^3)/((E^3 + x)*Log[E^3 + x]^3),x]

[Out]

E^(4 + 2*x)*x^2 - 80*E^12*ExpIntegralEi[2*Log[E^3 + x]] - 96*E^6*(1 - E^3)^2*ExpIntegralEi[2*Log[E^3 + x]] + 6
4*E^9*(2 - E^3)*ExpIntegralEi[2*Log[E^3 + x]] + 16*E^6*(6 - 20*E^3 + 15*E^6)*ExpIntegralEi[2*Log[E^3 + x]] + 3
60*E^9*ExpIntegralEi[3*Log[E^3 + x]] + 144*E^3*(1 - E^3)^2*ExpIntegralEi[3*Log[E^3 + x]] - 216*E^6*(2 - E^3)*E
xpIntegralEi[3*Log[E^3 + x]] - 144*E^3*(1 - 5*E^3 + 5*E^6)*ExpIntegralEi[3*Log[E^3 + x]] - 640*E^6*ExpIntegral
Ei[4*Log[E^3 + x]] - 64*(1 - E^3)^2*ExpIntegralEi[4*Log[E^3 + x]] + 256*E^3*(2 - E^3)*ExpIntegralEi[4*Log[E^3
+ x]] + 64*(1 - 10*E^3 + 15*E^6)*ExpIntegralEi[4*Log[E^3 + x]] + 500*E^3*ExpIntegralEi[5*Log[E^3 + x]] + 200*(
1 - 3*E^3)*ExpIntegralEi[5*Log[E^3 + x]] - 100*(2 - E^3)*ExpIntegralEi[5*Log[E^3 + x]] + (4*E^12*(1 - E^3)^2)/
Log[E^3 + x]^2 - (4*E^9*(1 - E^3)^2*(E^3 + x))/Log[E^3 + x]^2 + (4*E^6*(1 - E^3)^2*x*(E^3 + x))/Log[E^3 + x]^2
 - (4*E^3*(1 - E^3)^2*x^2*(E^3 + x))/Log[E^3 + x]^2 + (4*(1 - E^3)^2*x^3*(E^3 + x))/Log[E^3 + x]^2 + (4*(2 - E
^3)*x^4*(E^3 + x))/Log[E^3 + x]^2 + (4*x^5*(E^3 + x))/Log[E^3 + x]^2 + (8*E^9*(2 - 5*E^3 + 3*E^6)*(E^3 + x))/L
og[E^3 + x] + (16*(1 - E^3)^2*x^3*(E^3 + x))/Log[E^3 + x] + (16*E^3*(2 - E^3)*x^3*(E^3 + x))/Log[E^3 + x] + (2
0*E^3*x^4*(E^3 + x))/Log[E^3 + x] + (20*(2 - E^3)*x^4*(E^3 + x))/Log[E^3 + x] + (24*x^5*(E^3 + x))/Log[E^3 + x
] - (8*E^6*(6 - 20*E^3 + 15*E^6)*(E^3 + x)^2)/Log[E^3 + x] + (48*E^3*(1 - 5*E^3 + 5*E^6)*(E^3 + x)^3)/Log[E^3
+ x] - (16*(1 - 10*E^3 + 15*E^6)*(E^3 + x)^4)/Log[E^3 + x] - (40*(1 - 3*E^3)*(E^3 + x)^5)/Log[E^3 + x] - (24*(
E^3 + x)^6)/Log[E^3 + x] + 4*E^15*LogIntegral[E^3 + x] + 16*E^9*(1 - E^3)^2*LogIntegral[E^3 + x] - 4*E^12*(2 -
 E^3)*LogIntegral[E^3 + x] - 8*E^9*(2 - 5*E^3 + 3*E^6)*LogIntegral[E^3 + x] - 4*E^6*(1 - E^3)*Defer[Int][E^(2
+ x)/Log[E^3 + x]^2, x] - 8*(1 - E^3)*Defer[Int][E^(8 + x)/Log[E^3 + x]^2, x] + 4*Defer[Int][E^(11 + x)/Log[E^
3 + x]^2, x] + 4*(1 - E^3)*Defer[Int][E^(11 + x)/((E^3 + x)*Log[E^3 + x]^2), x] + 12*(1 - E^3)*Defer[Int][(E^(
5 + x)*(E^3 + x))/Log[E^3 + x]^2, x] - 12*Defer[Int][(E^(8 + x)*(E^3 + x))/Log[E^3 + x]^2, x] - 4*(1 - E^3)*De
fer[Int][(E^(2 + x)*(E^3 + x)^2)/Log[E^3 + x]^2, x] + 12*Defer[Int][(E^(5 + x)*(E^3 + x)^2)/Log[E^3 + x]^2, x]
 - 4*Defer[Int][(E^(2 + x)*(E^3 + x)^3)/Log[E^3 + x]^2, x] + 4*(3 - 5*E^3 + E^6)*Defer[Int][E^(8 + x)/Log[E^3
+ x], x] - 4*E^3*(6 - 15*E^3 + 4*E^6)*Defer[Int][(E^(2 + x)*(E^3 + x))/Log[E^3 + x], x] + 12*(1 - 5*E^3 + 2*E^
6)*Defer[Int][(E^(2 + x)*(E^3 + x)^2)/Log[E^3 + x], x] + 4*(5 - 4*E^3)*Defer[Int][(E^(2 + x)*(E^3 + x)^3)/Log[
E^3 + x], x] + 4*Defer[Int][(E^(2 + x)*(E^3 + x)^4)/Log[E^3 + x], x]

Rubi steps

integral=2x(e4+2x(1+x)4x3(1+x)2(e3+x)log3(e3+x)+2x2(1+x)(e2+x+2x(2+3x)+e3(4+6x))(e3+x)log2(e3+x)+2e2+xx(3+5x+x2)log(e3+x))dx=2x(e4+2x(1+x)4x3(1+x)2(e3+x)log3(e3+x)+2x2(1+x)(e2+x+2x(2+3x)+e3(4+6x))(e3+x)log2(e3+x)+2e2+xx(3+5x+x2)log(e3+x))dx=2(e4+2xx(1+x)+4x3(1+x)(xx2+2e3log(e3+x)+2(1+3e32)xlog(e3+x)+3x2log(e3+x))(e3+x)log3(e3+x)+2e2+xx2(xx2+3e3log(e3+x)+3(1+5e33)xlog(e3+x)+5(1+e35)x2log(e3+x)+x3log(e3+x))(e3+x)log2(e3+x))dx=2e4+2xx(1+x)dx+4e2+xx2(xx2+3e3log(e3+x)+3(1+5e33)xlog(e3+x)+5(1+e35)x2log(e3+x)+x3log(e3+x))(e3+x)log2(e3+x)dx+8x3(1+x)(xx2+2e3log(e3+x)+2(1+3e32)xlog(e3+x)+3x2log(e3+x))(e3+x)log3(e3+x)dx=2(e4+2xx+e4+2xx2)dx+4e2+xx2(x(1+x)+(e3+x)(3+5x+x2)log(e3+x))(e3+x)log2(e3+x)dx+8x3(1+x)(x(1+x)+(e3+x)(2+3x)log(e3+x))(e3+x)log3(e3+x)dx=2e4+2xxdx+2e4+2xx2dx+4(e2+xx3(1+x)(e3+x)log2(e3+x)+e2+xx2(3+5x+x2)log(e3+x))dx+8(x4(1+x)2(e3+x)log3(e3+x)+x3(1+x)(2+3x)log2(e3+x))dx=e4+2xx+e4+2xx22e4+2xxdx4e2+xx3(1+x)(e3+x)log2(e3+x)dx+4e2+xx2(3+5x+x2)log(e3+x)dx8x4(1+x)2(e3+x)log3(e3+x)dx+8x3(1+x)(2+3x)log2(e3+x)dxe4+2xdx=12e4+2x+e4+2xx24(e2+x(e6e9)log2(e3+x)+e5+x(1+e3)xlog2(e3+x)e2+x(1+e3)x2log2(e3+x)+e2+xx3log2(e3+x)+e11+x(1+e3)(e3+x)log2(e3+x))dx+4(e8+x(35e3+e6)log(e3+x)+e2+x(6e3+15e64e9)(e3+x)log(e3+x)+3e2+x(15e3+2e6)(e3+x)2log(e3+x)+e2+x(54e3)(e3+x)3log(e3+x)+e2+x(e3+x)4log(e3+x))dx8(e9(1+e3)2log3(e3+x)+e6(1+e3)2xlog3(e3+x)e3(1+e3)2x2log3(e3+x)+(1+e3)2x3log3(e3+x)(2+e3)x4log3(e3+x)+x5log3(e3+x)+e12(1+e3)2(e3+x)log3(e3+x))dx+8(e9(25e3+3e6)log2(e3+x)+e6(620e3+15e6)(e3+x)log2(e3+x)6(e35e6+5e9)(e3+x)2log2(e3+x)+2(110e3+15e6)(e3+x)3log2(e3+x)5(1+3e3)(e3+x)4log2(e3+x)+3(e3+x)5log2(e3+x))dx+e4+2xdx=Rest of rules removed due to large latex content

________________________________________________________________________________________

Mathematica [A]  time = 0.16, size = 33, normalized size = 1.27 x2(2x(1+x)+e2+xlog(e3+x))2log2(e3+x)

Antiderivative was successfully verified.

[In]

Integrate[(-8*x^4 - 16*x^5 - 8*x^6 + (16*x^4 + 40*x^5 + 24*x^6 + E^(2 + x)*(-4*x^3 - 4*x^4) + E^3*(16*x^3 + 40
*x^4 + 24*x^5))*Log[E^3 + x] + E^x*(E^5*(12*x^2 + 20*x^3 + 4*x^4) + E^2*(12*x^3 + 20*x^4 + 4*x^5))*Log[E^3 + x
]^2 + E^(2*x)*(E^7*(2*x + 2*x^2) + E^4*(2*x^2 + 2*x^3))*Log[E^3 + x]^3)/((E^3 + x)*Log[E^3 + x]^3),x]

[Out]

(x^2*(2*x*(1 + x) + E^(2 + x)*Log[E^3 + x])^2)/Log[E^3 + x]^2

________________________________________________________________________________________

fricas [B]  time = 0.62, size = 59, normalized size = 2.27 4x6+8x5+x2e(2x+4)log(x+e3)2+4x4+4(x4+x3)e(x+2)log(x+e3)log(x+e3)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2*x^2+2*x)*exp(1)^4*exp(3)+(2*x^3+2*x^2)*exp(1)^4)*exp(x)^2*log(exp(3)+x)^3+((4*x^4+20*x^3+12*x^2
)*exp(1)^2*exp(3)+(4*x^5+20*x^4+12*x^3)*exp(1)^2)*exp(x)*log(exp(3)+x)^2+((-4*x^4-4*x^3)*exp(1)^2*exp(x)+(24*x
^5+40*x^4+16*x^3)*exp(3)+24*x^6+40*x^5+16*x^4)*log(exp(3)+x)-8*x^6-16*x^5-8*x^4)/(exp(3)+x)/log(exp(3)+x)^3,x,
 algorithm="fricas")

[Out]

(4*x^6 + 8*x^5 + x^2*e^(2*x + 4)*log(x + e^3)^2 + 4*x^4 + 4*(x^4 + x^3)*e^(x + 2)*log(x + e^3))/log(x + e^3)^2

________________________________________________________________________________________

giac [B]  time = 0.35, size = 88, normalized size = 3.38 4x6log(x+e3)+4x4e(x+2)log(x+e3)2+8x5log(x+e3)+4x3e(x+2)log(x+e3)2+x2e(2x+4)log(x+e3)3+4x4log(x+e3)log(x+e3)3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2*x^2+2*x)*exp(1)^4*exp(3)+(2*x^3+2*x^2)*exp(1)^4)*exp(x)^2*log(exp(3)+x)^3+((4*x^4+20*x^3+12*x^2
)*exp(1)^2*exp(3)+(4*x^5+20*x^4+12*x^3)*exp(1)^2)*exp(x)*log(exp(3)+x)^2+((-4*x^4-4*x^3)*exp(1)^2*exp(x)+(24*x
^5+40*x^4+16*x^3)*exp(3)+24*x^6+40*x^5+16*x^4)*log(exp(3)+x)-8*x^6-16*x^5-8*x^4)/(exp(3)+x)/log(exp(3)+x)^3,x,
 algorithm="giac")

[Out]

(4*x^6*log(x + e^3) + 4*x^4*e^(x + 2)*log(x + e^3)^2 + 8*x^5*log(x + e^3) + 4*x^3*e^(x + 2)*log(x + e^3)^2 + x
^2*e^(2*x + 4)*log(x + e^3)^3 + 4*x^4*log(x + e^3))/log(x + e^3)^3

________________________________________________________________________________________

maple [B]  time = 0.12, size = 55, normalized size = 2.12




method result size



risch x2e2x+4+4x3(ln(e3+x)xe2+x+ln(e3+x)e2+x+x3+2x2+x)ln(e3+x)2 55



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((2*x^2+2*x)*exp(1)^4*exp(3)+(2*x^3+2*x^2)*exp(1)^4)*exp(x)^2*ln(exp(3)+x)^3+((4*x^4+20*x^3+12*x^2)*exp(1
)^2*exp(3)+(4*x^5+20*x^4+12*x^3)*exp(1)^2)*exp(x)*ln(exp(3)+x)^2+((-4*x^4-4*x^3)*exp(1)^2*exp(x)+(24*x^5+40*x^
4+16*x^3)*exp(3)+24*x^6+40*x^5+16*x^4)*ln(exp(3)+x)-8*x^6-16*x^5-8*x^4)/(exp(3)+x)/ln(exp(3)+x)^3,x,method=_RE
TURNVERBOSE)

[Out]

x^2*exp(2*x+4)+4*x^3*(ln(exp(3)+x)*x*exp(2+x)+ln(exp(3)+x)*exp(2+x)+x^3+2*x^2+x)/ln(exp(3)+x)^2

________________________________________________________________________________________

maxima [B]  time = 0.41, size = 63, normalized size = 2.42 4x6+8x5+x2e(2x+4)log(x+e3)2+4x4+4(x4e2+x3e2)exlog(x+e3)log(x+e3)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2*x^2+2*x)*exp(1)^4*exp(3)+(2*x^3+2*x^2)*exp(1)^4)*exp(x)^2*log(exp(3)+x)^3+((4*x^4+20*x^3+12*x^2
)*exp(1)^2*exp(3)+(4*x^5+20*x^4+12*x^3)*exp(1)^2)*exp(x)*log(exp(3)+x)^2+((-4*x^4-4*x^3)*exp(1)^2*exp(x)+(24*x
^5+40*x^4+16*x^3)*exp(3)+24*x^6+40*x^5+16*x^4)*log(exp(3)+x)-8*x^6-16*x^5-8*x^4)/(exp(3)+x)/log(exp(3)+x)^3,x,
 algorithm="maxima")

[Out]

(4*x^6 + 8*x^5 + x^2*e^(2*x + 4)*log(x + e^3)^2 + 4*x^4 + 4*(x^4*e^2 + x^3*e^2)*e^x*log(x + e^3))/log(x + e^3)
^2

________________________________________________________________________________________

mupad [B]  time = 4.06, size = 79, normalized size = 3.04 4x4ln(x+e3)2+8x5ln(x+e3)2+4x6ln(x+e3)2+x2e2x+4+4x3ex+2ln(x+e3)+4x4ex+2ln(x+e3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((log(x + exp(3))*(exp(3)*(16*x^3 + 40*x^4 + 24*x^5) + 16*x^4 + 40*x^5 + 24*x^6 - exp(2)*exp(x)*(4*x^3 + 4*
x^4)) - 8*x^4 - 16*x^5 - 8*x^6 + exp(x)*log(x + exp(3))^2*(exp(2)*(12*x^3 + 20*x^4 + 4*x^5) + exp(5)*(12*x^2 +
 20*x^3 + 4*x^4)) + exp(2*x)*log(x + exp(3))^3*(exp(7)*(2*x + 2*x^2) + exp(4)*(2*x^2 + 2*x^3)))/(log(x + exp(3
))^3*(x + exp(3))),x)

[Out]

(4*x^4)/log(x + exp(3))^2 + (8*x^5)/log(x + exp(3))^2 + (4*x^6)/log(x + exp(3))^2 + x^2*exp(2*x + 4) + (4*x^3*
exp(x + 2))/log(x + exp(3)) + (4*x^4*exp(x + 2))/log(x + exp(3))

________________________________________________________________________________________

sympy [B]  time = 0.47, size = 68, normalized size = 2.62 x2e4e2xlog(x+e3)+(4x4e2+4x3e2)exlog(x+e3)+4x6+8x5+4x4log(x+e3)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2*x**2+2*x)*exp(1)**4*exp(3)+(2*x**3+2*x**2)*exp(1)**4)*exp(x)**2*ln(exp(3)+x)**3+((4*x**4+20*x**
3+12*x**2)*exp(1)**2*exp(3)+(4*x**5+20*x**4+12*x**3)*exp(1)**2)*exp(x)*ln(exp(3)+x)**2+((-4*x**4-4*x**3)*exp(1
)**2*exp(x)+(24*x**5+40*x**4+16*x**3)*exp(3)+24*x**6+40*x**5+16*x**4)*ln(exp(3)+x)-8*x**6-16*x**5-8*x**4)/(exp
(3)+x)/ln(exp(3)+x)**3,x)

[Out]

(x**2*exp(4)*exp(2*x)*log(x + exp(3)) + (4*x**4*exp(2) + 4*x**3*exp(2))*exp(x))/log(x + exp(3)) + (4*x**6 + 8*
x**5 + 4*x**4)/log(x + exp(3))**2

________________________________________________________________________________________