3.41.58 102x+e26x(5+x)2(10+30x+6x2)5xx2+e26x(5+x)2(5x+x2)dx

Optimal. Leaf size=26 log(x21+e8+6(1x)(5+x)2)

________________________________________________________________________________________

Rubi [F]  time = 0.75, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 102x+e26x(5+x)2(10+30x+6x2)5xx2+e26x(5+x)2(5x+x2)dx

Verification is not applicable to the result.

[In]

Int[(-10 - 2*x + E^(-2 - 6*x)*(5 + x)^2*(10 + 30*x + 6*x^2))/(-5*x - x^2 + E^(-2 - 6*x)*(5 + x)^2*(5*x + x^2))
,x]

[Out]

2*Log[x] - 14*Defer[Int][(-5 + E^(1 + 3*x) - x)^(-1), x] + 3*Defer[Int][x/(5 - E^(1 + 3*x) + x), x] + 14*Defer
[Int][(5 + E^(1 + 3*x) + x)^(-1), x] + 3*Defer[Int][x/(5 + E^(1 + 3*x) + x), x]

Rubi steps

integral=2(25+e2+6x80x30x23x3)x(e2+6x(5+x)2)dx=225+e2+6x80x30x23x3x(e2+6x(5+x)2)dx=2(1x+14+3x2(5e1+3x+x)+14+3x2(5+e1+3x+x))dx=2log(x)+14+3x5e1+3x+xdx+14+3x5+e1+3x+xdx=2log(x)+(145+e1+3xx+3x5e1+3x+x)dx+(145+e1+3x+x+3x5+e1+3x+x)dx=2log(x)+3x5e1+3x+xdx+3x5+e1+3x+xdx1415+e1+3xxdx+1415+e1+3x+xdx

________________________________________________________________________________________

Mathematica [A]  time = 0.23, size = 28, normalized size = 1.08 6x+2log(x)log(25e2+6x+10x+x2)

Antiderivative was successfully verified.

[In]

Integrate[(-10 - 2*x + E^(-2 - 6*x)*(5 + x)^2*(10 + 30*x + 6*x^2))/(-5*x - x^2 + E^(-2 - 6*x)*(5 + x)^2*(5*x +
 x^2)),x]

[Out]

6*x + 2*Log[x] - Log[25 - E^(2 + 6*x) + 10*x + x^2]

________________________________________________________________________________________

fricas [A]  time = 0.93, size = 22, normalized size = 0.85 2log(x)log(e(6x+2log(x+5)2)1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((6*x^2+30*x+10)*exp(log(5+x)-3*x-1)^2-2*x-10)/((x^2+5*x)*exp(log(5+x)-3*x-1)^2-x^2-5*x),x, algorith
m="fricas")

[Out]

2*log(x) - log(e^(-6*x + 2*log(x + 5) - 2) - 1)

________________________________________________________________________________________

giac [A]  time = 0.31, size = 27, normalized size = 1.04 6xlog(x210x+e(6x+2)25)+2log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((6*x^2+30*x+10)*exp(log(5+x)-3*x-1)^2-2*x-10)/((x^2+5*x)*exp(log(5+x)-3*x-1)^2-x^2-5*x),x, algorith
m="giac")

[Out]

6*x - log(-x^2 - 10*x + e^(6*x + 2) - 25) + 2*log(x)

________________________________________________________________________________________

maple [A]  time = 0.11, size = 24, normalized size = 0.92




method result size



risch 2ln(x)2ln((5+x)2e6x21) 24
norman 2ln(x)ln(eln(5+x)3x11)ln(eln(5+x)3x1+1) 36



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((6*x^2+30*x+10)*exp(ln(5+x)-3*x-1)^2-2*x-10)/((x^2+5*x)*exp(ln(5+x)-3*x-1)^2-x^2-5*x),x,method=_RETURNVER
BOSE)

[Out]

2*ln(x)-2-ln((5+x)^2*exp(-6*x-2)-1)

________________________________________________________________________________________

maxima [A]  time = 0.45, size = 41, normalized size = 1.58 6xlog((x+e(3x+1)+5)e(1))log((xe(3x+1)+5)e(1))+2log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((6*x^2+30*x+10)*exp(log(5+x)-3*x-1)^2-2*x-10)/((x^2+5*x)*exp(log(5+x)-3*x-1)^2-x^2-5*x),x, algorith
m="maxima")

[Out]

6*x - log((x + e^(3*x + 1) + 5)*e^(-1)) - log(-(x - e^(3*x + 1) + 5)*e^(-1)) + 2*log(x)

________________________________________________________________________________________

mupad [B]  time = 0.24, size = 37, normalized size = 1.42 2ln(x)ln(25e6xe2+10xe6xe2+x2e6xe21)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*x - exp(2*log(x + 5) - 6*x - 2)*(30*x + 6*x^2 + 10) + 10)/(5*x - exp(2*log(x + 5) - 6*x - 2)*(5*x + x^2
) + x^2),x)

[Out]

2*log(x) - log(25*exp(-6*x)*exp(-2) + 10*x*exp(-6*x)*exp(-2) + x^2*exp(-6*x)*exp(-2) - 1)

________________________________________________________________________________________

sympy [A]  time = 0.36, size = 31, normalized size = 1.19 2log(x)2log(x+5)log(e6x21x2+10x+25)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((6*x**2+30*x+10)*exp(ln(5+x)-3*x-1)**2-2*x-10)/((x**2+5*x)*exp(ln(5+x)-3*x-1)**2-x**2-5*x),x)

[Out]

2*log(x) - 2*log(x + 5) - log(exp(-6*x - 2) - 1/(x**2 + 10*x + 25))

________________________________________________________________________________________