3.41.59
Optimal. Leaf size=18
________________________________________________________________________________________
Rubi [F] time = 127.75, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(E^(9*x + 3*x^2 + (3*x + x^2)*Log[-1 + E^E^x + x])*(-9 + 6*x + 7*x^2 + E^E^x*(9 + 6*x + E^x*(3*x + x^2)) +
(-3 + x + 2*x^2 + E^E^x*(3 + 2*x))*Log[-1 + E^E^x + x]))/(-1 + E^E^x + x),x]
[Out]
9*Defer[Int][E^(x*(3 + x)*(3 + Log[-1 + E^E^x + x])), x] + 6*Defer[Int][E^(x*(3 + x)*(3 + Log[-1 + E^E^x + x])
)*x, x] + 3*Defer[Int][(E^(x*(3 + x)*(3 + Log[-1 + E^E^x + x]))*x)/(-1 + E^E^x + x), x] + 3*Defer[Int][(E^(E^x
+ x + x*(3 + x)*(3 + Log[-1 + E^E^x + x]))*x)/(-1 + E^E^x + x), x] + Defer[Int][(E^(x*(3 + x)*(3 + Log[-1 + E
^E^x + x]))*x^2)/(-1 + E^E^x + x), x] + Defer[Int][(E^(E^x + x + x*(3 + x)*(3 + Log[-1 + E^E^x + x]))*x^2)/(-1
+ E^E^x + x), x] + 3*Defer[Int][E^(x*(3 + x)*(3 + Log[-1 + E^E^x + x]))*Log[-1 + E^E^x + x], x] + 2*Defer[Int
][E^(x*(3 + x)*(3 + Log[-1 + E^E^x + x]))*x*Log[-1 + E^E^x + x], x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 23, normalized size = 1.28
Antiderivative was successfully verified.
[In]
Integrate[(E^(9*x + 3*x^2 + (3*x + x^2)*Log[-1 + E^E^x + x])*(-9 + 6*x + 7*x^2 + E^E^x*(9 + 6*x + E^x*(3*x + x
^2)) + (-3 + x + 2*x^2 + E^E^x*(3 + 2*x))*Log[-1 + E^E^x + x]))/(-1 + E^E^x + x),x]
[Out]
E^(3*x*(3 + x))*(-1 + E^E^x + x)^(x*(3 + x))
________________________________________________________________________________________
fricas [A] time = 0.72, size = 25, normalized size = 1.39
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((2*x+3)*exp(exp(x))+2*x^2+x-3)*log(exp(exp(x))+x-1)+((x^2+3*x)*exp(x)+6*x+9)*exp(exp(x))+7*x^2+6*x
-9)*exp((x^2+3*x)*log(exp(exp(x))+x-1)+3*x^2+9*x)/(exp(exp(x))+x-1),x, algorithm="fricas")
[Out]
e^(3*x^2 + (x^2 + 3*x)*log(x + e^(e^x) - 1) + 9*x)
________________________________________________________________________________________
giac [B] time = 2.39, size = 31, normalized size = 1.72
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((2*x+3)*exp(exp(x))+2*x^2+x-3)*log(exp(exp(x))+x-1)+((x^2+3*x)*exp(x)+6*x+9)*exp(exp(x))+7*x^2+6*x
-9)*exp((x^2+3*x)*log(exp(exp(x))+x-1)+3*x^2+9*x)/(exp(exp(x))+x-1),x, algorithm="giac")
[Out]
e^(x^2*log(x + e^(e^x) - 1) + 3*x^2 + 3*x*log(x + e^(e^x) - 1) + 9*x)
________________________________________________________________________________________
maple [A] time = 0.06, size = 21, normalized size = 1.17
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((2*x+3)*exp(exp(x))+2*x^2+x-3)*ln(exp(exp(x))+x-1)+((x^2+3*x)*exp(x)+6*x+9)*exp(exp(x))+7*x^2+6*x-9)*exp
((x^2+3*x)*ln(exp(exp(x))+x-1)+3*x^2+9*x)/(exp(exp(x))+x-1),x,method=_RETURNVERBOSE)
[Out]
(exp(exp(x))+x-1)^((3+x)*x)*exp(3*(3+x)*x)
________________________________________________________________________________________
maxima [B] time = 0.55, size = 31, normalized size = 1.72
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((2*x+3)*exp(exp(x))+2*x^2+x-3)*log(exp(exp(x))+x-1)+((x^2+3*x)*exp(x)+6*x+9)*exp(exp(x))+7*x^2+6*x
-9)*exp((x^2+3*x)*log(exp(exp(x))+x-1)+3*x^2+9*x)/(exp(exp(x))+x-1),x, algorithm="maxima")
[Out]
e^(x^2*log(x + e^(e^x) - 1) + 3*x^2 + 3*x*log(x + e^(e^x) - 1) + 9*x)
________________________________________________________________________________________
mupad [B] time = 0.22, size = 25, normalized size = 1.39
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((exp(9*x + 3*x^2 + log(x + exp(exp(x)) - 1)*(3*x + x^2))*(6*x + exp(exp(x))*(6*x + exp(x)*(3*x + x^2) + 9)
+ log(x + exp(exp(x)) - 1)*(x + 2*x^2 + exp(exp(x))*(2*x + 3) - 3) + 7*x^2 - 9))/(x + exp(exp(x)) - 1),x)
[Out]
exp(9*x + 3*x^2)*(x + exp(exp(x)) - 1)^(3*x + x^2)
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((2*x+3)*exp(exp(x))+2*x**2+x-3)*ln(exp(exp(x))+x-1)+((x**2+3*x)*exp(x)+6*x+9)*exp(exp(x))+7*x**2+6
*x-9)*exp((x**2+3*x)*ln(exp(exp(x))+x-1)+3*x**2+9*x)/(exp(exp(x))+x-1),x)
[Out]
Timed out
________________________________________________________________________________________