3.41.62 e9e5xlog(eexlog(x))+5xlog(eexlog(x))(4545eex+xx+(45eex45log(x))log(eexlog(x)))(eexlog(x))log2(eexlog(x))dx

Optimal. Leaf size=22 e9e5xlog(eexlog(x))

________________________________________________________________________________________

Rubi [F]  time = 4.90, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} exp(9e5xlog(eexlog(x))+5xlog(eexlog(x)))(4545eex+xx+(45eex45log(x))log(eexlog(x)))(eexlog(x))log2(eexlog(x))dx

Verification is not applicable to the result.

[In]

Int[(E^(9*E^((5*x)/Log[E^E^x - Log[x]]) + (5*x)/Log[E^E^x - Log[x]])*(45 - 45*E^(E^x + x)*x + (45*E^E^x - 45*L
og[x])*Log[E^E^x - Log[x]]))/((E^E^x - Log[x])*Log[E^E^x - Log[x]]^2),x]

[Out]

45*Defer[Int][E^(9*E^((5*x)/Log[E^E^x - Log[x]]) + (5*x)/Log[E^E^x - Log[x]])/((E^E^x - Log[x])*Log[E^E^x - Lo
g[x]]^2), x] - 45*Defer[Int][(E^(E^x + 9*E^((5*x)/Log[E^E^x - Log[x]]) + x + (5*x)/Log[E^E^x - Log[x]])*x)/((E
^E^x - Log[x])*Log[E^E^x - Log[x]]^2), x] + 45*Defer[Int][E^(9*E^((5*x)/Log[E^E^x - Log[x]]) + (5*x)/Log[E^E^x
 - Log[x]])/Log[E^E^x - Log[x]], x]

Rubi steps

integral=(45exp(ex+9e5xlog(eexlog(x))+x+5xlog(eexlog(x)))x(eexlog(x))log2(eexlog(x))+45exp(9e5xlog(eexlog(x))+5xlog(eexlog(x)))(1+eexlog(eexlog(x))log(x)log(eexlog(x)))(eexlog(x))log2(eexlog(x)))dx=(45exp(ex+9e5xlog(eexlog(x))+x+5xlog(eexlog(x)))x(eexlog(x))log2(eexlog(x))dx)+45exp(9e5xlog(eexlog(x))+5xlog(eexlog(x)))(1+eexlog(eexlog(x))log(x)log(eexlog(x)))(eexlog(x))log2(eexlog(x))dx=(45exp(ex+9e5xlog(eexlog(x))+x+5xlog(eexlog(x)))x(eexlog(x))log2(eexlog(x))dx)+45exp(9e5xlog(eexlog(x))+5xlog(eexlog(x)))(1+(eexlog(x))log(eexlog(x)))(eexlog(x))log2(eexlog(x))dx=45(exp(9e5xlog(eexlog(x))+5xlog(eexlog(x)))(eexlog(x))log2(eexlog(x))+exp(9e5xlog(eexlog(x))+5xlog(eexlog(x)))log(eexlog(x)))dx45exp(ex+9e5xlog(eexlog(x))+x+5xlog(eexlog(x)))x(eexlog(x))log2(eexlog(x))dx=45exp(9e5xlog(eexlog(x))+5xlog(eexlog(x)))(eexlog(x))log2(eexlog(x))dx45exp(ex+9e5xlog(eexlog(x))+x+5xlog(eexlog(x)))x(eexlog(x))log2(eexlog(x))dx+45exp(9e5xlog(eexlog(x))+5xlog(eexlog(x)))log(eexlog(x))dx

________________________________________________________________________________________

Mathematica [A]  time = 0.11, size = 22, normalized size = 1.00 e9e5xlog(eexlog(x))

Antiderivative was successfully verified.

[In]

Integrate[(E^(9*E^((5*x)/Log[E^E^x - Log[x]]) + (5*x)/Log[E^E^x - Log[x]])*(45 - 45*E^(E^x + x)*x + (45*E^E^x
- 45*Log[x])*Log[E^E^x - Log[x]]))/((E^E^x - Log[x])*Log[E^E^x - Log[x]]^2),x]

[Out]

E^(9*E^((5*x)/Log[E^E^x - Log[x]]))

________________________________________________________________________________________

fricas [B]  time = 0.66, size = 102, normalized size = 4.64 e(9e(5xlog((exlog(x)e(x+ex))e(x)))log((exlog(x)e(x+ex))e(x))+5xlog((exlog(x)e(x+ex))e(x))5xlog((exlog(x)e(x+ex))e(x)))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((45*exp(exp(x))-45*log(x))*log(exp(exp(x))-log(x))-45*x*exp(x)*exp(exp(x))+45)*exp(5*x/log(exp(exp(
x))-log(x)))*exp(9*exp(5*x/log(exp(exp(x))-log(x))))/(exp(exp(x))-log(x))/log(exp(exp(x))-log(x))^2,x, algorit
hm="fricas")

[Out]

e^((9*e^(5*x/log(-(e^x*log(x) - e^(x + e^x))*e^(-x)))*log(-(e^x*log(x) - e^(x + e^x))*e^(-x)) + 5*x)/log(-(e^x
*log(x) - e^(x + e^x))*e^(-x)) - 5*x/log(-(e^x*log(x) - e^(x + e^x))*e^(-x)))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 undef

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((45*exp(exp(x))-45*log(x))*log(exp(exp(x))-log(x))-45*x*exp(x)*exp(exp(x))+45)*exp(5*x/log(exp(exp(
x))-log(x)))*exp(9*exp(5*x/log(exp(exp(x))-log(x))))/(exp(exp(x))-log(x))/log(exp(exp(x))-log(x))^2,x, algorit
hm="giac")

[Out]

undef

________________________________________________________________________________________

maple [A]  time = 0.08, size = 19, normalized size = 0.86




method result size



risch e9e5xln(eexln(x)) 19



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((45*exp(exp(x))-45*ln(x))*ln(exp(exp(x))-ln(x))-45*x*exp(x)*exp(exp(x))+45)*exp(5*x/ln(exp(exp(x))-ln(x))
)*exp(9*exp(5*x/ln(exp(exp(x))-ln(x))))/(exp(exp(x))-ln(x))/ln(exp(exp(x))-ln(x))^2,x,method=_RETURNVERBOSE)

[Out]

exp(9*exp(5*x/ln(exp(exp(x))-ln(x))))

________________________________________________________________________________________

maxima [A]  time = 0.78, size = 18, normalized size = 0.82 e(9e(5xlog(e(ex)log(x))))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((45*exp(exp(x))-45*log(x))*log(exp(exp(x))-log(x))-45*x*exp(x)*exp(exp(x))+45)*exp(5*x/log(exp(exp(
x))-log(x)))*exp(9*exp(5*x/log(exp(exp(x))-log(x))))/(exp(exp(x))-log(x))/log(exp(exp(x))-log(x))^2,x, algorit
hm="maxima")

[Out]

e^(9*e^(5*x/log(e^(e^x) - log(x))))

________________________________________________________________________________________

mupad [B]  time = 3.37, size = 18, normalized size = 0.82 e9e5xln(eexln(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(9*exp((5*x)/log(exp(exp(x)) - log(x))))*exp((5*x)/log(exp(exp(x)) - log(x)))*(log(exp(exp(x)) - log(x
))*(45*exp(exp(x)) - 45*log(x)) - 45*x*exp(exp(x))*exp(x) + 45))/(log(exp(exp(x)) - log(x))^2*(exp(exp(x)) - l
og(x))),x)

[Out]

exp(9*exp((5*x)/log(exp(exp(x)) - log(x))))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 Timed out

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((45*exp(exp(x))-45*ln(x))*ln(exp(exp(x))-ln(x))-45*x*exp(x)*exp(exp(x))+45)*exp(5*x/ln(exp(exp(x))-
ln(x)))*exp(9*exp(5*x/ln(exp(exp(x))-ln(x))))/(exp(exp(x))-ln(x))/ln(exp(exp(x))-ln(x))**2,x)

[Out]

Timed out

________________________________________________________________________________________