Optimal. Leaf size=22 \[ e^{9 e^{\frac {5 x}{\log \left (e^{e^x}-\log (x)\right )}}} \]
________________________________________________________________________________________
Rubi [F] time = 4.90, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (9 e^{\frac {5 x}{\log \left (e^{e^x}-\log (x)\right )}}+\frac {5 x}{\log \left (e^{e^x}-\log (x)\right )}\right ) \left (45-45 e^{e^x+x} x+\left (45 e^{e^x}-45 \log (x)\right ) \log \left (e^{e^x}-\log (x)\right )\right )}{\left (e^{e^x}-\log (x)\right ) \log ^2\left (e^{e^x}-\log (x)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {45 \exp \left (e^x+9 e^{\frac {5 x}{\log \left (e^{e^x}-\log (x)\right )}}+x+\frac {5 x}{\log \left (e^{e^x}-\log (x)\right )}\right ) x}{\left (e^{e^x}-\log (x)\right ) \log ^2\left (e^{e^x}-\log (x)\right )}+\frac {45 \exp \left (9 e^{\frac {5 x}{\log \left (e^{e^x}-\log (x)\right )}}+\frac {5 x}{\log \left (e^{e^x}-\log (x)\right )}\right ) \left (1+e^{e^x} \log \left (e^{e^x}-\log (x)\right )-\log (x) \log \left (e^{e^x}-\log (x)\right )\right )}{\left (e^{e^x}-\log (x)\right ) \log ^2\left (e^{e^x}-\log (x)\right )}\right ) \, dx\\ &=-\left (45 \int \frac {\exp \left (e^x+9 e^{\frac {5 x}{\log \left (e^{e^x}-\log (x)\right )}}+x+\frac {5 x}{\log \left (e^{e^x}-\log (x)\right )}\right ) x}{\left (e^{e^x}-\log (x)\right ) \log ^2\left (e^{e^x}-\log (x)\right )} \, dx\right )+45 \int \frac {\exp \left (9 e^{\frac {5 x}{\log \left (e^{e^x}-\log (x)\right )}}+\frac {5 x}{\log \left (e^{e^x}-\log (x)\right )}\right ) \left (1+e^{e^x} \log \left (e^{e^x}-\log (x)\right )-\log (x) \log \left (e^{e^x}-\log (x)\right )\right )}{\left (e^{e^x}-\log (x)\right ) \log ^2\left (e^{e^x}-\log (x)\right )} \, dx\\ &=-\left (45 \int \frac {\exp \left (e^x+9 e^{\frac {5 x}{\log \left (e^{e^x}-\log (x)\right )}}+x+\frac {5 x}{\log \left (e^{e^x}-\log (x)\right )}\right ) x}{\left (e^{e^x}-\log (x)\right ) \log ^2\left (e^{e^x}-\log (x)\right )} \, dx\right )+45 \int \frac {\exp \left (9 e^{\frac {5 x}{\log \left (e^{e^x}-\log (x)\right )}}+\frac {5 x}{\log \left (e^{e^x}-\log (x)\right )}\right ) \left (1+\left (e^{e^x}-\log (x)\right ) \log \left (e^{e^x}-\log (x)\right )\right )}{\left (e^{e^x}-\log (x)\right ) \log ^2\left (e^{e^x}-\log (x)\right )} \, dx\\ &=45 \int \left (\frac {\exp \left (9 e^{\frac {5 x}{\log \left (e^{e^x}-\log (x)\right )}}+\frac {5 x}{\log \left (e^{e^x}-\log (x)\right )}\right )}{\left (e^{e^x}-\log (x)\right ) \log ^2\left (e^{e^x}-\log (x)\right )}+\frac {\exp \left (9 e^{\frac {5 x}{\log \left (e^{e^x}-\log (x)\right )}}+\frac {5 x}{\log \left (e^{e^x}-\log (x)\right )}\right )}{\log \left (e^{e^x}-\log (x)\right )}\right ) \, dx-45 \int \frac {\exp \left (e^x+9 e^{\frac {5 x}{\log \left (e^{e^x}-\log (x)\right )}}+x+\frac {5 x}{\log \left (e^{e^x}-\log (x)\right )}\right ) x}{\left (e^{e^x}-\log (x)\right ) \log ^2\left (e^{e^x}-\log (x)\right )} \, dx\\ &=45 \int \frac {\exp \left (9 e^{\frac {5 x}{\log \left (e^{e^x}-\log (x)\right )}}+\frac {5 x}{\log \left (e^{e^x}-\log (x)\right )}\right )}{\left (e^{e^x}-\log (x)\right ) \log ^2\left (e^{e^x}-\log (x)\right )} \, dx-45 \int \frac {\exp \left (e^x+9 e^{\frac {5 x}{\log \left (e^{e^x}-\log (x)\right )}}+x+\frac {5 x}{\log \left (e^{e^x}-\log (x)\right )}\right ) x}{\left (e^{e^x}-\log (x)\right ) \log ^2\left (e^{e^x}-\log (x)\right )} \, dx+45 \int \frac {\exp \left (9 e^{\frac {5 x}{\log \left (e^{e^x}-\log (x)\right )}}+\frac {5 x}{\log \left (e^{e^x}-\log (x)\right )}\right )}{\log \left (e^{e^x}-\log (x)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 22, normalized size = 1.00 \begin {gather*} e^{9 e^{\frac {5 x}{\log \left (e^{e^x}-\log (x)\right )}}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.66, size = 102, normalized size = 4.64 \begin {gather*} e^{\left (\frac {9 \, e^{\left (\frac {5 \, x}{\log \left (-{\left (e^{x} \log \relax (x) - e^{\left (x + e^{x}\right )}\right )} e^{\left (-x\right )}\right )}\right )} \log \left (-{\left (e^{x} \log \relax (x) - e^{\left (x + e^{x}\right )}\right )} e^{\left (-x\right )}\right ) + 5 \, x}{\log \left (-{\left (e^{x} \log \relax (x) - e^{\left (x + e^{x}\right )}\right )} e^{\left (-x\right )}\right )} - \frac {5 \, x}{\log \left (-{\left (e^{x} \log \relax (x) - e^{\left (x + e^{x}\right )}\right )} e^{\left (-x\right )}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 19, normalized size = 0.86
method | result | size |
risch | \({\mathrm e}^{9 \,{\mathrm e}^{\frac {5 x}{\ln \left ({\mathrm e}^{{\mathrm e}^{x}}-\ln \relax (x )\right )}}}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.78, size = 18, normalized size = 0.82 \begin {gather*} e^{\left (9 \, e^{\left (\frac {5 \, x}{\log \left (e^{\left (e^{x}\right )} - \log \relax (x)\right )}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.37, size = 18, normalized size = 0.82 \begin {gather*} {\mathrm {e}}^{9\,{\mathrm {e}}^{\frac {5\,x}{\ln \left ({\mathrm {e}}^{{\mathrm {e}}^x}-\ln \relax (x)\right )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________