3.41.63
Optimal. Leaf size=29
________________________________________________________________________________________
Rubi [F] time = 8.51, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(E^x*(-4 + 8*x^3) + E^((2*(3*x + 6*x*Log[x] + 3*x*Log[x]^2))/E^x)*(72*x^2 - 24*x^3 + (96*x^2 - 48*x^3)*Log
[x] + (24*x^2 - 24*x^3)*Log[x]^2) + E^((3*x + 6*x*Log[x] + 3*x*Log[x]^2)/E^x)*(8*E^x*x^2 + 72*x^3 - 24*x^4 + (
96*x^3 - 48*x^4)*Log[x] + (24*x^3 - 24*x^4)*Log[x]^2))/(E^x*x^2),x]
[Out]
4/x + 4*x^2 + 8*Defer[Int][E^((3*x*(1 + Log[x]^2))/E^x)*x^((6*x)/E^x), x] + 72*Defer[Int][x^((12*x)/E^x)/E^((x
*(-6 + E^x - 6*Log[x]^2))/E^x), x] + 72*Defer[Int][x^(1 + (6*x)/E^x)/E^((x*(-3 + E^x - 3*Log[x]^2))/E^x), x] -
24*Defer[Int][x^(2 + (6*x)/E^x)/E^((x*(-3 + E^x - 3*Log[x]^2))/E^x), x] - 24*Defer[Int][x^(1 + (12*x)/E^x)/E^
((x*(-6 + E^x - 6*Log[x]^2))/E^x), x] + 96*Defer[Int][(x^((12*x)/E^x)*Log[x])/E^((x*(-6 + E^x - 6*Log[x]^2))/E
^x), x] + 96*Defer[Int][(x^(1 + (6*x)/E^x)*Log[x])/E^((x*(-3 + E^x - 3*Log[x]^2))/E^x), x] - 48*Defer[Int][(x^
(2 + (6*x)/E^x)*Log[x])/E^((x*(-3 + E^x - 3*Log[x]^2))/E^x), x] - 48*Defer[Int][(x^(1 + (12*x)/E^x)*Log[x])/E^
((x*(-6 + E^x - 6*Log[x]^2))/E^x), x] + 24*Defer[Int][(x^((12*x)/E^x)*Log[x]^2)/E^((x*(-6 + E^x - 6*Log[x]^2))
/E^x), x] + 24*Defer[Int][(x^(1 + (6*x)/E^x)*Log[x]^2)/E^((x*(-3 + E^x - 3*Log[x]^2))/E^x), x] - 24*Defer[Int]
[(x^(2 + (6*x)/E^x)*Log[x]^2)/E^((x*(-3 + E^x - 3*Log[x]^2))/E^x), x] - 24*Defer[Int][(x^(1 + (12*x)/E^x)*Log[
x]^2)/E^((x*(-6 + E^x - 6*Log[x]^2))/E^x), x]
Rubi steps
________________________________________________________________________________________
Mathematica [B] time = 4.97, size = 83, normalized size = 2.86
Antiderivative was successfully verified.
[In]
Integrate[(E^x*(-4 + 8*x^3) + E^((2*(3*x + 6*x*Log[x] + 3*x*Log[x]^2))/E^x)*(72*x^2 - 24*x^3 + (96*x^2 - 48*x^
3)*Log[x] + (24*x^2 - 24*x^3)*Log[x]^2) + E^((3*x + 6*x*Log[x] + 3*x*Log[x]^2)/E^x)*(8*E^x*x^2 + 72*x^3 - 24*x
^4 + (96*x^3 - 48*x^4)*Log[x] + (24*x^3 - 24*x^4)*Log[x]^2))/(E^x*x^2),x]
[Out]
4/x + 4*x^2 + 4*E^((6*x)/E^x + (6*x*Log[x]^2)/E^x)*x^((12*x)/E^x) + 8*E^((3*x)/E^x + (3*x*Log[x]^2)/E^x)*x^(1
+ (6*x)/E^x)
________________________________________________________________________________________
fricas [B] time = 0.65, size = 57, normalized size = 1.97
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-24*x^3+24*x^2)*log(x)^2+(-48*x^3+96*x^2)*log(x)-24*x^3+72*x^2)*exp((3*x*log(x)^2+6*x*log(x)+3*x)
/exp(x))^2+((-24*x^4+24*x^3)*log(x)^2+(-48*x^4+96*x^3)*log(x)+8*exp(x)*x^2-24*x^4+72*x^3)*exp((3*x*log(x)^2+6*
x*log(x)+3*x)/exp(x))+(8*x^3-4)*exp(x))/exp(x)/x^2,x, algorithm="fricas")
[Out]
4*(x^3 + 2*x^2*e^(3*(x*log(x)^2 + 2*x*log(x) + x)*e^(-x)) + x*e^(6*(x*log(x)^2 + 2*x*log(x) + x)*e^(-x)) + 1)/
x
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-24*x^3+24*x^2)*log(x)^2+(-48*x^3+96*x^2)*log(x)-24*x^3+72*x^2)*exp((3*x*log(x)^2+6*x*log(x)+3*x)
/exp(x))^2+((-24*x^4+24*x^3)*log(x)^2+(-48*x^4+96*x^3)*log(x)+8*exp(x)*x^2-24*x^4+72*x^3)*exp((3*x*log(x)^2+6*
x*log(x)+3*x)/exp(x))+(8*x^3-4)*exp(x))/exp(x)/x^2,x, algorithm="giac")
[Out]
integrate(-4*(6*(x^3 + (x^3 - x^2)*log(x)^2 - 3*x^2 + 2*(x^3 - 2*x^2)*log(x))*e^(6*(x*log(x)^2 + 2*x*log(x) +
x)*e^(-x)) + 2*(3*x^4 - 9*x^3 - x^2*e^x + 3*(x^4 - x^3)*log(x)^2 + 6*(x^4 - 2*x^3)*log(x))*e^(3*(x*log(x)^2 +
2*x*log(x) + x)*e^(-x)) - (2*x^3 - 1)*e^x)*e^(-x)/x^2, x)
________________________________________________________________________________________
maple [A] time = 0.12, size = 45, normalized size = 1.55
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((-24*x^3+24*x^2)*ln(x)^2+(-48*x^3+96*x^2)*ln(x)-24*x^3+72*x^2)*exp((3*x*ln(x)^2+6*x*ln(x)+3*x)/exp(x))^2
+((-24*x^4+24*x^3)*ln(x)^2+(-48*x^4+96*x^3)*ln(x)+8*exp(x)*x^2-24*x^4+72*x^3)*exp((3*x*ln(x)^2+6*x*ln(x)+3*x)/
exp(x))+(8*x^3-4)*exp(x))/exp(x)/x^2,x,method=_RETURNVERBOSE)
[Out]
4*x^2+4/x+4*exp(6*x*(ln(x)+1)^2*exp(-x))+8*x*exp(3*x*(ln(x)+1)^2*exp(-x))
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-24*x^3+24*x^2)*log(x)^2+(-48*x^3+96*x^2)*log(x)-24*x^3+72*x^2)*exp((3*x*log(x)^2+6*x*log(x)+3*x)
/exp(x))^2+((-24*x^4+24*x^3)*log(x)^2+(-48*x^4+96*x^3)*log(x)+8*exp(x)*x^2-24*x^4+72*x^3)*exp((3*x*log(x)^2+6*
x*log(x)+3*x)/exp(x))+(8*x^3-4)*exp(x))/exp(x)/x^2,x, algorithm="maxima")
[Out]
4*x^2 + 4/x + 4*e^(6*x*e^(-x)*log(x)^2 + 12*x*e^(-x)*log(x) + 6*x*e^(-x)) + 4*integrate(-2*(3*(x^2 - x)*log(x)
^2 + 3*x^2 + 6*(x^2 - 2*x)*log(x) - 9*x - e^x)*e^(3*x*e^(-x)*log(x)^2 + 6*x*e^(-x)*log(x) + 3*x*e^(-x) - x), x
)
________________________________________________________________________________________
mupad [B] time = 3.22, size = 74, normalized size = 2.55
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((exp(-x)*(exp(2*exp(-x)*(3*x + 3*x*log(x)^2 + 6*x*log(x)))*(log(x)*(96*x^2 - 48*x^3) + log(x)^2*(24*x^2 -
24*x^3) + 72*x^2 - 24*x^3) + exp(exp(-x)*(3*x + 3*x*log(x)^2 + 6*x*log(x)))*(log(x)*(96*x^3 - 48*x^4) + 8*x^2*
exp(x) + log(x)^2*(24*x^3 - 24*x^4) + 72*x^3 - 24*x^4) + exp(x)*(8*x^3 - 4)))/x^2,x)
[Out]
4*x^(12*x*exp(-x))*exp(6*x*exp(-x) + 6*x*exp(-x)*log(x)^2) + 4/x + 4*x^2 + 8*x*x^(6*x*exp(-x))*exp(3*x*exp(-x)
+ 3*x*exp(-x)*log(x)^2)
________________________________________________________________________________________
sympy [B] time = 176.54, size = 60, normalized size = 2.07
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-24*x**3+24*x**2)*ln(x)**2+(-48*x**3+96*x**2)*ln(x)-24*x**3+72*x**2)*exp((3*x*ln(x)**2+6*x*ln(x)+
3*x)/exp(x))**2+((-24*x**4+24*x**3)*ln(x)**2+(-48*x**4+96*x**3)*ln(x)+8*exp(x)*x**2-24*x**4+72*x**3)*exp((3*x*
ln(x)**2+6*x*ln(x)+3*x)/exp(x))+(8*x**3-4)*exp(x))/exp(x)/x**2,x)
[Out]
4*x**2 + 8*x*exp((3*x*log(x)**2 + 6*x*log(x) + 3*x)*exp(-x)) + 4*exp(2*(3*x*log(x)**2 + 6*x*log(x) + 3*x)*exp(
-x)) + 4/x
________________________________________________________________________________________