Optimal. Leaf size=27 \[ \left (-\log \left (-\frac {15 x}{16}\right )+\frac {e^3}{x+\log (x)-\log (2 x)}\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 2.49, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2 e^6 x+2 e^3 x^2+\left (-2 e^3 x^2-2 x^3\right ) \log \left (-\frac {15 x}{16}\right )+\left (4 e^3 x+\left (-2 e^3 x-6 x^2\right ) \log \left (-\frac {15 x}{16}\right )\right ) \log (x)+\left (2 e^3-6 x \log \left (-\frac {15 x}{16}\right )\right ) \log ^2(x)-2 \log \left (-\frac {15 x}{16}\right ) \log ^3(x)+\left (-4 e^3 x+\left (2 e^3 x+6 x^2\right ) \log \left (-\frac {15 x}{16}\right )+\left (-4 e^3+12 x \log \left (-\frac {15 x}{16}\right )\right ) \log (x)+6 \log \left (-\frac {15 x}{16}\right ) \log ^2(x)\right ) \log (2 x)+\left (2 e^3-6 x \log \left (-\frac {15 x}{16}\right )-6 \log \left (-\frac {15 x}{16}\right ) \log (x)\right ) \log ^2(2 x)+2 \log \left (-\frac {15 x}{16}\right ) \log ^3(2 x)}{-x^4-3 x^3 \log (x)-3 x^2 \log ^2(x)-x \log ^3(x)+\left (3 x^3+6 x^2 \log (x)+3 x \log ^2(x)\right ) \log (2 x)+\left (-3 x^2-3 x \log (x)\right ) \log ^2(2 x)+x \log ^3(2 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (x^2+\log ^2(2)+x \left (e^3-\log (4)\right )\right ) \left (-e^3-\log \left (\frac {16}{15}\right ) (x-\log (2))-(-x+\log (2)) \log (-x)\right )}{x (x+\log (x)-\log (2 x))^3} \, dx\\ &=2 \int \frac {\left (x^2+\log ^2(2)+x \left (e^3-\log (4)\right )\right ) \left (-e^3-\log \left (\frac {16}{15}\right ) (x-\log (2))-(-x+\log (2)) \log (-x)\right )}{x (x+\log (x)-\log (2 x))^3} \, dx\\ &=2 \int \left (\frac {x \left (-x \log \left (\frac {16}{15}\right )-e^3 \left (1-\frac {\log \left (\frac {16}{15}\right ) \log (2)}{e^3}\right )+x \log (-x)-\log (2) \log (-x)\right )}{(x+\log (x)-\log (2 x))^3}+\frac {\log ^2(2) \left (-x \log \left (\frac {16}{15}\right )-e^3 \left (1-\frac {\log \left (\frac {16}{15}\right ) \log (2)}{e^3}\right )+x \log (-x)-\log (2) \log (-x)\right )}{x (x+\log (x)-\log (2 x))^3}+\frac {e^3 \left (1-\frac {\log (4)}{e^3}\right ) \left (-x \log \left (\frac {16}{15}\right )-e^3 \left (1-\frac {\log \left (\frac {16}{15}\right ) \log (2)}{e^3}\right )+x \log (-x)-\log (2) \log (-x)\right )}{(x+\log (x)-\log (2 x))^3}\right ) \, dx\\ &=2 \int \frac {x \left (-x \log \left (\frac {16}{15}\right )-e^3 \left (1-\frac {\log \left (\frac {16}{15}\right ) \log (2)}{e^3}\right )+x \log (-x)-\log (2) \log (-x)\right )}{(x+\log (x)-\log (2 x))^3} \, dx+\left (2 \log ^2(2)\right ) \int \frac {-x \log \left (\frac {16}{15}\right )-e^3 \left (1-\frac {\log \left (\frac {16}{15}\right ) \log (2)}{e^3}\right )+x \log (-x)-\log (2) \log (-x)}{x (x+\log (x)-\log (2 x))^3} \, dx+\left (2 \left (e^3-\log (4)\right )\right ) \int \frac {-x \log \left (\frac {16}{15}\right )-e^3 \left (1-\frac {\log \left (\frac {16}{15}\right ) \log (2)}{e^3}\right )+x \log (-x)-\log (2) \log (-x)}{(x+\log (x)-\log (2 x))^3} \, dx\\ &=2 \int \left (-\frac {x^2 \log \left (\frac {16}{15}\right )}{(x+\log (x)-\log (2 x))^3}-\frac {x \left (e^3-\log \left (\frac {16}{15}\right ) \log (2)\right )}{(x+\log (x)-\log (2 x))^3}+\frac {x^2 \log (-x)}{(x+\log (x)-\log (2 x))^3}-\frac {x \log (2) \log (-x)}{(x+\log (x)-\log (2 x))^3}\right ) \, dx+\left (2 \log ^2(2)\right ) \int \frac {-e^3+\log \left (\frac {16}{15}\right ) (-x+\log (2))+(x-\log (2)) \log (-x)}{x (x+\log (x)-\log (2 x))^3} \, dx+\left (2 \left (e^3-\log (4)\right )\right ) \int \frac {-e^3+\log \left (\frac {16}{15}\right ) (-x+\log (2))+(x-\log (2)) \log (-x)}{(x+\log (x)-\log (2 x))^3} \, dx\\ &=2 \int \frac {x^2 \log (-x)}{(x+\log (x)-\log (2 x))^3} \, dx-\left (2 \log \left (\frac {16}{15}\right )\right ) \int \frac {x^2}{(x+\log (x)-\log (2 x))^3} \, dx-(2 \log (2)) \int \frac {x \log (-x)}{(x+\log (x)-\log (2 x))^3} \, dx+\left (2 \log ^2(2)\right ) \int \left (-\frac {\log \left (\frac {16}{15}\right )}{(x+\log (x)-\log (2 x))^3}-\frac {e^3 \left (1-\frac {\log \left (\frac {16}{15}\right ) \log (2)}{e^3}\right )}{x (x+\log (x)-\log (2 x))^3}+\frac {\log (-x)}{(x+\log (x)-\log (2 x))^3}-\frac {\log (2) \log (-x)}{x (x+\log (x)-\log (2 x))^3}\right ) \, dx-\left (2 \left (e^3-\log \left (\frac {16}{15}\right ) \log (2)\right )\right ) \int \frac {x}{(x+\log (x)-\log (2 x))^3} \, dx+\left (2 \left (e^3-\log (4)\right )\right ) \int \left (-\frac {x \log \left (\frac {16}{15}\right )}{(x+\log (x)-\log (2 x))^3}-\frac {e^3 \left (1-\frac {\log \left (\frac {16}{15}\right ) \log (2)}{e^3}\right )}{(x+\log (x)-\log (2 x))^3}+\frac {x \log (-x)}{(x+\log (x)-\log (2 x))^3}-\frac {\log (2) \log (-x)}{(x+\log (x)-\log (2 x))^3}\right ) \, dx\\ &=2 \int \frac {x^2 \log (-x)}{(x+\log (x)-\log (2 x))^3} \, dx-\left (2 \log \left (\frac {16}{15}\right )\right ) \int \frac {x^2}{(x+\log (x)-\log (2 x))^3} \, dx-(2 \log (2)) \int \frac {x \log (-x)}{(x+\log (x)-\log (2 x))^3} \, dx+\left (2 \log ^2(2)\right ) \int \frac {\log (-x)}{(x+\log (x)-\log (2 x))^3} \, dx-\left (2 \log \left (\frac {16}{15}\right ) \log ^2(2)\right ) \int \frac {1}{(x+\log (x)-\log (2 x))^3} \, dx-\left (2 \log ^3(2)\right ) \int \frac {\log (-x)}{x (x+\log (x)-\log (2 x))^3} \, dx-\left (2 \left (e^3-\log \left (\frac {16}{15}\right ) \log (2)\right )\right ) \int \frac {x}{(x+\log (x)-\log (2 x))^3} \, dx-\left (2 \log ^2(2) \left (e^3-\log \left (\frac {16}{15}\right ) \log (2)\right )\right ) \int \frac {1}{x (x+\log (x)-\log (2 x))^3} \, dx+\left (2 \left (e^3-\log (4)\right )\right ) \int \frac {x \log (-x)}{(x+\log (x)-\log (2 x))^3} \, dx-\left (2 \log \left (\frac {16}{15}\right ) \left (e^3-\log (4)\right )\right ) \int \frac {x}{(x+\log (x)-\log (2 x))^3} \, dx-\left (2 \log (2) \left (e^3-\log (4)\right )\right ) \int \frac {\log (-x)}{(x+\log (x)-\log (2 x))^3} \, dx-\left (2 \left (e^3-\log \left (\frac {16}{15}\right ) \log (2)\right ) \left (e^3-\log (4)\right )\right ) \int \frac {1}{(x+\log (x)-\log (2 x))^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 1.53, size = 295, normalized size = 10.93 \begin {gather*} -\frac {\log ^3(2) \log ^2(-x)-2 \log (x) \left (\log \left (\frac {16}{15}\right ) \log ^3(2)+\left (-\log ^2(4)+\log (2) \log (16)\right ) \log (x)\right )+\frac {e^6 \log (2) (\log (x)-\log (2 x))^2}{(x+\log (x)-\log (2 x))^2}+\frac {2 \log (-x) \left (e^3 \log ^2(2)+\left (-\log ^2(4)+\log (2) \log (16)\right ) \log (x)\right ) (\log (x)-\log (2 x))}{x+\log (x)-\log (2 x)}+\frac {2 (\log (x)-\log (2 x)) \left (\log ^2(2) \left (e^3-\log \left (\frac {16}{15}\right ) \log (2)\right )+2 \log \left (\frac {16}{15}\right ) \log ^3(x)+\left (-e^3 \left (1+\log \left (\frac {16}{15}\right )\right )+\log \left (\frac {16}{15}\right ) \log (8)\right ) \log ^2(2 x)-2 \log \left (\frac {16}{15}\right ) \log ^3(2 x)+2 \log (x) \log (2 x) \left (e^3 \left (1+\log \left (\frac {16}{15}\right )\right )-\log \left (\frac {16}{15}\right ) \log (8)+3 \log \left (\frac {16}{15}\right ) \log (2 x)\right )-\log ^2(x) \left (e^3 \left (1+\log \left (\frac {16}{15}\right )\right )-\log \left (\frac {16}{15}\right ) \log (8)+6 \log \left (\frac {16}{15}\right ) \log (2 x)\right )\right )}{x+\log (x)-\log (2 x)}}{(\log (x)-\log (2 x))^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.87, size = 85, normalized size = 3.15 \begin {gather*} \frac {{\left (x^{2} - 2 \, {\left (x + \log \left (\frac {16}{15}\right )\right )} \log \left (\frac {32}{15}\right ) + \log \left (\frac {32}{15}\right )^{2} + 2 \, x \log \left (\frac {16}{15}\right ) + \log \left (\frac {16}{15}\right )^{2}\right )} \log \left (-\frac {15}{16} \, x\right )^{2} - 2 \, {\left (x e^{3} - e^{3} \log \left (\frac {32}{15}\right ) + e^{3} \log \left (\frac {16}{15}\right )\right )} \log \left (-\frac {15}{16} \, x\right ) + e^{6}}{x^{2} - 2 \, {\left (x + \log \left (\frac {16}{15}\right )\right )} \log \left (\frac {32}{15}\right ) + \log \left (\frac {32}{15}\right )^{2} + 2 \, x \log \left (\frac {16}{15}\right ) + \log \left (\frac {16}{15}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.24, size = 85, normalized size = 3.15 \begin {gather*} \frac {x^{2} \log \left (-\frac {15}{16} \, x\right )^{2} - 2 \, x \log \relax (2) \log \left (-\frac {15}{16} \, x\right )^{2} + \log \relax (2)^{2} \log \left (-\frac {15}{16} \, x\right )^{2} + 8 \, x e^{3} \log \relax (2) - 8 \, e^{3} \log \relax (2)^{2} - 2 \, x e^{3} \log \left (-15 \, x\right ) + 2 \, e^{3} \log \relax (2) \log \left (-15 \, x\right ) + e^{6}}{x^{2} - 2 \, x \log \relax (2) + \log \relax (2)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.57, size = 120, normalized size = 4.44
method | result | size |
default | \(\frac {{\mathrm e}^{6}}{\left (x -\ln \relax (2)\right )^{2}}-\frac {2 \,{\mathrm e}^{3} \ln \left (x -\ln \relax (2)\right )}{\ln \relax (2)}+\frac {8 \,{\mathrm e}^{3} \ln \relax (2)}{x -\ln \relax (2)}-8 \ln \relax (2) \ln \relax (x )+\frac {2 \ln \relax (x ) {\mathrm e}^{3}}{\ln \relax (2)}-\frac {2 \ln \left (15\right ) {\mathrm e}^{3}}{x -\ln \relax (2)}+2 \ln \relax (x ) \ln \left (15\right )+\frac {2 \,{\mathrm e}^{3} \ln \left (\ln \relax (2)-x \right )}{\ln \relax (2)}+\frac {2 \,{\mathrm e}^{3} \ln \left (-x \right ) x}{\ln \relax (2) \left (\ln \relax (2)-x \right )}+\ln \left (-x \right )^{2}\) | \(120\) |
risch | \(\ln \relax (x )^{2}+\frac {4 i {\mathrm e}^{3} \ln \relax (x )}{2 i \ln \relax (2)-2 i x}+\frac {-8 x \,{\mathrm e}^{3} \ln \relax (5)-8 x \,{\mathrm e}^{3} \ln \relax (3)+4 \,{\mathrm e}^{6}+8 i \pi \,{\mathrm e}^{3} \ln \relax (2)-8 i \pi \,{\mathrm e}^{3} x +8 i \pi \ln \relax (2)^{2} \ln \left (\left (-2 \pi \mathrm {csgn}\left (i x \right )^{2}+2 \pi \mathrm {csgn}\left (i x \right )^{3}+2 \pi -2 i \ln \relax (3)+8 i \ln \relax (2)-2 i \ln \relax (5)\right ) x \right )+8 i \pi \ln \left (\left (-2 \pi \mathrm {csgn}\left (i x \right )^{2}+2 \pi \mathrm {csgn}\left (i x \right )^{3}+2 \pi -2 i \ln \relax (3)+8 i \ln \relax (2)-2 i \ln \relax (5)\right ) x \right ) x^{2}-16 \ln \relax (3) \ln \relax (2) \ln \left (\left (-2 \pi \mathrm {csgn}\left (i x \right )^{2}+2 \pi \mathrm {csgn}\left (i x \right )^{3}+2 \pi -2 i \ln \relax (3)+8 i \ln \relax (2)-2 i \ln \relax (5)\right ) x \right ) x -16 \ln \relax (2) \ln \left (\left (-2 \pi \mathrm {csgn}\left (i x \right )^{2}+2 \pi \mathrm {csgn}\left (i x \right )^{3}+2 \pi -2 i \ln \relax (3)+8 i \ln \relax (2)-2 i \ln \relax (5)\right ) x \right ) \ln \relax (5) x +32 x \,{\mathrm e}^{3} \ln \relax (2)-32 \,{\mathrm e}^{3} \ln \relax (2)^{2}+8 \ln \relax (3) {\mathrm e}^{3} \ln \relax (2)+8 \,{\mathrm e}^{3} \ln \relax (2) \ln \relax (5)+8 \ln \relax (3) \ln \relax (2)^{2} \ln \left (\left (-2 \pi \mathrm {csgn}\left (i x \right )^{2}+2 \pi \mathrm {csgn}\left (i x \right )^{3}+2 \pi -2 i \ln \relax (3)+8 i \ln \relax (2)-2 i \ln \relax (5)\right ) x \right )+8 \ln \relax (3) \ln \left (\left (-2 \pi \mathrm {csgn}\left (i x \right )^{2}+2 \pi \mathrm {csgn}\left (i x \right )^{3}+2 \pi -2 i \ln \relax (3)+8 i \ln \relax (2)-2 i \ln \relax (5)\right ) x \right ) x^{2}+8 \ln \relax (2)^{2} \ln \left (\left (-2 \pi \mathrm {csgn}\left (i x \right )^{2}+2 \pi \mathrm {csgn}\left (i x \right )^{3}+2 \pi -2 i \ln \relax (3)+8 i \ln \relax (2)-2 i \ln \relax (5)\right ) x \right ) \ln \relax (5)+64 \ln \relax (2)^{2} \ln \left (\left (-2 \pi \mathrm {csgn}\left (i x \right )^{2}+2 \pi \mathrm {csgn}\left (i x \right )^{3}+2 \pi -2 i \ln \relax (3)+8 i \ln \relax (2)-2 i \ln \relax (5)\right ) x \right ) x -32 \ln \relax (2) \ln \left (\left (-2 \pi \mathrm {csgn}\left (i x \right )^{2}+2 \pi \mathrm {csgn}\left (i x \right )^{3}+2 \pi -2 i \ln \relax (3)+8 i \ln \relax (2)-2 i \ln \relax (5)\right ) x \right ) x^{2}+8 \ln \left (\left (-2 \pi \mathrm {csgn}\left (i x \right )^{2}+2 \pi \mathrm {csgn}\left (i x \right )^{3}+2 \pi -2 i \ln \relax (3)+8 i \ln \relax (2)-2 i \ln \relax (5)\right ) x \right ) \ln \relax (5) x^{2}-16 i \pi \ln \relax (2) \ln \left (\left (-2 \pi \mathrm {csgn}\left (i x \right )^{2}+2 \pi \mathrm {csgn}\left (i x \right )^{3}+2 \pi -2 i \ln \relax (3)+8 i \ln \relax (2)-2 i \ln \relax (5)\right ) x \right ) x \mathrm {csgn}\left (i x \right )^{3}+16 i \pi \ln \relax (2) \ln \left (\left (-2 \pi \mathrm {csgn}\left (i x \right )^{2}+2 \pi \mathrm {csgn}\left (i x \right )^{3}+2 \pi -2 i \ln \relax (3)+8 i \ln \relax (2)-2 i \ln \relax (5)\right ) x \right ) x \mathrm {csgn}\left (i x \right )^{2}-32 \ln \relax (2)^{3} \ln \left (\left (-2 \pi \mathrm {csgn}\left (i x \right )^{2}+2 \pi \mathrm {csgn}\left (i x \right )^{3}+2 \pi -2 i \ln \relax (3)+8 i \ln \relax (2)-2 i \ln \relax (5)\right ) x \right )+8 i \pi \,{\mathrm e}^{3} x \mathrm {csgn}\left (i x \right )^{2}-8 i \pi \ln \left (\left (-2 \pi \mathrm {csgn}\left (i x \right )^{2}+2 \pi \mathrm {csgn}\left (i x \right )^{3}+2 \pi -2 i \ln \relax (3)+8 i \ln \relax (2)-2 i \ln \relax (5)\right ) x \right ) x^{2} \mathrm {csgn}\left (i x \right )^{2}-8 i \pi \,{\mathrm e}^{3} \ln \relax (2) \mathrm {csgn}\left (i x \right )^{2}-8 i \pi \,{\mathrm e}^{3} x \mathrm {csgn}\left (i x \right )^{3}+8 i \pi \,{\mathrm e}^{3} \ln \relax (2) \mathrm {csgn}\left (i x \right )^{3}+8 i \pi \ln \relax (2)^{2} \ln \left (\left (-2 \pi \mathrm {csgn}\left (i x \right )^{2}+2 \pi \mathrm {csgn}\left (i x \right )^{3}+2 \pi -2 i \ln \relax (3)+8 i \ln \relax (2)-2 i \ln \relax (5)\right ) x \right ) \mathrm {csgn}\left (i x \right )^{3}-8 i \pi \ln \relax (2)^{2} \ln \left (\left (-2 \pi \mathrm {csgn}\left (i x \right )^{2}+2 \pi \mathrm {csgn}\left (i x \right )^{3}+2 \pi -2 i \ln \relax (3)+8 i \ln \relax (2)-2 i \ln \relax (5)\right ) x \right ) \mathrm {csgn}\left (i x \right )^{2}+8 i \pi \ln \left (\left (-2 \pi \mathrm {csgn}\left (i x \right )^{2}+2 \pi \mathrm {csgn}\left (i x \right )^{3}+2 \pi -2 i \ln \relax (3)+8 i \ln \relax (2)-2 i \ln \relax (5)\right ) x \right ) x^{2} \mathrm {csgn}\left (i x \right )^{3}-16 i \pi \ln \relax (2) \ln \left (\left (-2 \pi \mathrm {csgn}\left (i x \right )^{2}+2 \pi \mathrm {csgn}\left (i x \right )^{3}+2 \pi -2 i \ln \relax (3)+8 i \ln \relax (2)-2 i \ln \relax (5)\right ) x \right ) x}{4 \ln \relax (2)^{2}-8 x \ln \relax (2)+4 x^{2}}\) | \(1096\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.55, size = 315, normalized size = 11.67 \begin {gather*} {\left (\frac {\log \left (x - \log \relax (2)\right )}{\log \relax (2)} - \frac {\log \relax (x)}{\log \relax (2)} - \frac {1}{x - \log \relax (2)}\right )} e^{3} - \frac {{\left (2 \, x - \log \relax (2)\right )} e^{3} \log \left (-\frac {15}{16} \, x\right )}{x^{2} - 2 \, x \log \relax (2) + \log \relax (2)^{2}} + \frac {{\left (2 \, x - \log \relax (2)\right )} e^{3}}{x^{2} - 2 \, x \log \relax (2) + \log \relax (2)^{2}} - \frac {e^{3} \log \left (x - \log \relax (2)\right )}{\log \relax (2)} - \frac {x e^{3} \log \relax (2) - {\left (x^{2} \log \relax (2) - 2 \, x \log \relax (2)^{2} + \log \relax (2)^{3}\right )} \log \relax (x)^{2} - {\left ({\left (i \, \pi + \log \relax (5)\right )} \log \relax (2)^{2} + \log \relax (3) \log \relax (2)^{2} - 4 \, \log \relax (2)^{3}\right )} e^{3} + {\left (2 \, {\left (-i \, \pi - \log \relax (5)\right )} \log \relax (2)^{3} - 2 \, \log \relax (3) \log \relax (2)^{3} + 8 \, \log \relax (2)^{4} + {\left (2 \, {\left (-i \, \pi - \log \relax (5)\right )} \log \relax (2) - 2 \, \log \relax (3) \log \relax (2) + 8 \, \log \relax (2)^{2} - e^{3}\right )} x^{2} - 2 \, e^{3} \log \relax (2)^{2} + 2 \, {\left (2 \, {\left (i \, \pi + \log \relax (5)\right )} \log \relax (2)^{2} + 2 \, \log \relax (3) \log \relax (2)^{2} - 8 \, \log \relax (2)^{3} + e^{3} \log \relax (2)\right )} x\right )} \log \relax (x)}{x^{2} \log \relax (2) - 2 \, x \log \relax (2)^{2} + \log \relax (2)^{3}} + \frac {e^{6}}{x^{2} - 2 \, x \log \relax (2) + \log \relax (2)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.56, size = 105, normalized size = 3.89 \begin {gather*} 2\,\ln \relax (x)\,\left (\ln \left (-\frac {15\,x}{16}\right )-\ln \relax (x)\right )+{\ln \relax (x)}^2+\frac {{\mathrm {e}}^6-2\,x\,{\mathrm {e}}^3\,\left (\ln \left (-\frac {15\,x}{16}\right )-\ln \relax (x)\right )+2\,{\mathrm {e}}^3\,\left (\ln \left (2\,x\right )-\ln \relax (x)\right )\,\left (\ln \left (-\frac {15\,x}{16}\right )-\ln \relax (x)\right )}{{\left (\ln \left (2\,x\right )-\ln \relax (x)\right )}^2-2\,x\,\left (\ln \left (2\,x\right )-\ln \relax (x)\right )+x^2}-\frac {2\,{\mathrm {e}}^3\,\ln \relax (x)}{x-\ln \left (2\,x\right )+\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [C] time = 10.79, size = 114, normalized size = 4.22 \begin {gather*} \log {\relax (x )}^{2} + 2 \left (- 4 \log {\relax (2 )} + \log {\left (15 \right )} + i \pi \right ) \log {\relax (x )} + \frac {x \left (- 8 e^{3} \log {\relax (2 )} + 2 e^{3} \log {\left (15 \right )} + 2 i \pi e^{3}\right ) - e^{6} - 2 e^{3} \log {\relax (2 )} \log {\left (15 \right )} + 8 e^{3} \log {\relax (2 )}^{2} - 2 i \pi e^{3} \log {\relax (2 )}}{- x^{2} + 2 x \log {\relax (2 )} - \log {\relax (2 )}^{2}} - \frac {2 e^{3} \log {\relax (x )}}{x - \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________