3.41.75
Optimal. Leaf size=27
________________________________________________________________________________________
Rubi [F] time = 2.49, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(2*E^6*x + 2*E^3*x^2 + (-2*E^3*x^2 - 2*x^3)*Log[(-15*x)/16] + (4*E^3*x + (-2*E^3*x - 6*x^2)*Log[(-15*x)/16
])*Log[x] + (2*E^3 - 6*x*Log[(-15*x)/16])*Log[x]^2 - 2*Log[(-15*x)/16]*Log[x]^3 + (-4*E^3*x + (2*E^3*x + 6*x^2
)*Log[(-15*x)/16] + (-4*E^3 + 12*x*Log[(-15*x)/16])*Log[x] + 6*Log[(-15*x)/16]*Log[x]^2)*Log[2*x] + (2*E^3 - 6
*x*Log[(-15*x)/16] - 6*Log[(-15*x)/16]*Log[x])*Log[2*x]^2 + 2*Log[(-15*x)/16]*Log[2*x]^3)/(-x^4 - 3*x^3*Log[x]
- 3*x^2*Log[x]^2 - x*Log[x]^3 + (3*x^3 + 6*x^2*Log[x] + 3*x*Log[x]^2)*Log[2*x] + (-3*x^2 - 3*x*Log[x])*Log[2*
x]^2 + x*Log[2*x]^3),x]
[Out]
-2*Log[16/15]*Log[2]^2*Defer[Int][(x + Log[x] - Log[2*x])^(-3), x] - 2*(E^3 - Log[16/15]*Log[2])*(E^3 - Log[4]
)*Defer[Int][(x + Log[x] - Log[2*x])^(-3), x] - 2*Log[2]^2*(E^3 - Log[16/15]*Log[2])*Defer[Int][1/(x*(x + Log[
x] - Log[2*x])^3), x] - 2*(E^3 - Log[16/15]*Log[2])*Defer[Int][x/(x + Log[x] - Log[2*x])^3, x] - 2*Log[16/15]*
(E^3 - Log[4])*Defer[Int][x/(x + Log[x] - Log[2*x])^3, x] - 2*Log[16/15]*Defer[Int][x^2/(x + Log[x] - Log[2*x]
)^3, x] + 2*Log[2]^2*Defer[Int][Log[-x]/(x + Log[x] - Log[2*x])^3, x] - 2*Log[2]*(E^3 - Log[4])*Defer[Int][Log
[-x]/(x + Log[x] - Log[2*x])^3, x] - 2*Log[2]^3*Defer[Int][Log[-x]/(x*(x + Log[x] - Log[2*x])^3), x] - 2*Log[2
]*Defer[Int][(x*Log[-x])/(x + Log[x] - Log[2*x])^3, x] + 2*(E^3 - Log[4])*Defer[Int][(x*Log[-x])/(x + Log[x] -
Log[2*x])^3, x] + 2*Defer[Int][(x^2*Log[-x])/(x + Log[x] - Log[2*x])^3, x]
Rubi steps
________________________________________________________________________________________
Mathematica [B] time = 1.53, size = 295, normalized size = 10.93
Antiderivative was successfully verified.
[In]
Integrate[(2*E^6*x + 2*E^3*x^2 + (-2*E^3*x^2 - 2*x^3)*Log[(-15*x)/16] + (4*E^3*x + (-2*E^3*x - 6*x^2)*Log[(-15
*x)/16])*Log[x] + (2*E^3 - 6*x*Log[(-15*x)/16])*Log[x]^2 - 2*Log[(-15*x)/16]*Log[x]^3 + (-4*E^3*x + (2*E^3*x +
6*x^2)*Log[(-15*x)/16] + (-4*E^3 + 12*x*Log[(-15*x)/16])*Log[x] + 6*Log[(-15*x)/16]*Log[x]^2)*Log[2*x] + (2*E
^3 - 6*x*Log[(-15*x)/16] - 6*Log[(-15*x)/16]*Log[x])*Log[2*x]^2 + 2*Log[(-15*x)/16]*Log[2*x]^3)/(-x^4 - 3*x^3*
Log[x] - 3*x^2*Log[x]^2 - x*Log[x]^3 + (3*x^3 + 6*x^2*Log[x] + 3*x*Log[x]^2)*Log[2*x] + (-3*x^2 - 3*x*Log[x])*
Log[2*x]^2 + x*Log[2*x]^3),x]
[Out]
-((Log[2]^3*Log[-x]^2 - 2*Log[x]*(Log[16/15]*Log[2]^3 + (-Log[4]^2 + Log[2]*Log[16])*Log[x]) + (E^6*Log[2]*(Lo
g[x] - Log[2*x])^2)/(x + Log[x] - Log[2*x])^2 + (2*Log[-x]*(E^3*Log[2]^2 + (-Log[4]^2 + Log[2]*Log[16])*Log[x]
)*(Log[x] - Log[2*x]))/(x + Log[x] - Log[2*x]) + (2*(Log[x] - Log[2*x])*(Log[2]^2*(E^3 - Log[16/15]*Log[2]) +
2*Log[16/15]*Log[x]^3 + (-(E^3*(1 + Log[16/15])) + Log[16/15]*Log[8])*Log[2*x]^2 - 2*Log[16/15]*Log[2*x]^3 + 2
*Log[x]*Log[2*x]*(E^3*(1 + Log[16/15]) - Log[16/15]*Log[8] + 3*Log[16/15]*Log[2*x]) - Log[x]^2*(E^3*(1 + Log[1
6/15]) - Log[16/15]*Log[8] + 6*Log[16/15]*Log[2*x])))/(x + Log[x] - Log[2*x]))/(Log[x] - Log[2*x])^3)
________________________________________________________________________________________
fricas [B] time = 0.87, size = 85, normalized size = 3.15
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((2*log(-15/16*x)*log(2*x)^3+(-6*log(-15/16*x)*log(x)-6*x*log(-15/16*x)+2*exp(3))*log(2*x)^2+(6*log(-
15/16*x)*log(x)^2+(12*x*log(-15/16*x)-4*exp(3))*log(x)+(2*x*exp(3)+6*x^2)*log(-15/16*x)-4*x*exp(3))*log(2*x)-2
*log(-15/16*x)*log(x)^3+(-6*x*log(-15/16*x)+2*exp(3))*log(x)^2+((-2*x*exp(3)-6*x^2)*log(-15/16*x)+4*x*exp(3))*
log(x)+(-2*x^2*exp(3)-2*x^3)*log(-15/16*x)+2*x*exp(3)^2+2*x^2*exp(3))/(x*log(2*x)^3+(-3*x*log(x)-3*x^2)*log(2*
x)^2+(3*x*log(x)^2+6*x^2*log(x)+3*x^3)*log(2*x)-x*log(x)^3-3*x^2*log(x)^2-3*x^3*log(x)-x^4),x, algorithm="fric
as")
[Out]
((x^2 - 2*(x + log(16/15))*log(32/15) + log(32/15)^2 + 2*x*log(16/15) + log(16/15)^2)*log(-15/16*x)^2 - 2*(x*e
^3 - e^3*log(32/15) + e^3*log(16/15))*log(-15/16*x) + e^6)/(x^2 - 2*(x + log(16/15))*log(32/15) + log(32/15)^2
+ 2*x*log(16/15) + log(16/15)^2)
________________________________________________________________________________________
giac [B] time = 0.24, size = 85, normalized size = 3.15
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((2*log(-15/16*x)*log(2*x)^3+(-6*log(-15/16*x)*log(x)-6*x*log(-15/16*x)+2*exp(3))*log(2*x)^2+(6*log(-
15/16*x)*log(x)^2+(12*x*log(-15/16*x)-4*exp(3))*log(x)+(2*x*exp(3)+6*x^2)*log(-15/16*x)-4*x*exp(3))*log(2*x)-2
*log(-15/16*x)*log(x)^3+(-6*x*log(-15/16*x)+2*exp(3))*log(x)^2+((-2*x*exp(3)-6*x^2)*log(-15/16*x)+4*x*exp(3))*
log(x)+(-2*x^2*exp(3)-2*x^3)*log(-15/16*x)+2*x*exp(3)^2+2*x^2*exp(3))/(x*log(2*x)^3+(-3*x*log(x)-3*x^2)*log(2*
x)^2+(3*x*log(x)^2+6*x^2*log(x)+3*x^3)*log(2*x)-x*log(x)^3-3*x^2*log(x)^2-3*x^3*log(x)-x^4),x, algorithm="giac
")
[Out]
(x^2*log(-15/16*x)^2 - 2*x*log(2)*log(-15/16*x)^2 + log(2)^2*log(-15/16*x)^2 + 8*x*e^3*log(2) - 8*e^3*log(2)^2
- 2*x*e^3*log(-15*x) + 2*e^3*log(2)*log(-15*x) + e^6)/(x^2 - 2*x*log(2) + log(2)^2)
________________________________________________________________________________________
maple [B] time = 0.57, size = 120, normalized size = 4.44
|
|
|
method |
result |
size |
|
|
|
default |
|
|
risch |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((2*ln(-15/16*x)*ln(2*x)^3+(-6*ln(-15/16*x)*ln(x)-6*x*ln(-15/16*x)+2*exp(3))*ln(2*x)^2+(6*ln(-15/16*x)*ln(x
)^2+(12*x*ln(-15/16*x)-4*exp(3))*ln(x)+(2*x*exp(3)+6*x^2)*ln(-15/16*x)-4*x*exp(3))*ln(2*x)-2*ln(-15/16*x)*ln(x
)^3+(-6*x*ln(-15/16*x)+2*exp(3))*ln(x)^2+((-2*x*exp(3)-6*x^2)*ln(-15/16*x)+4*x*exp(3))*ln(x)+(-2*x^2*exp(3)-2*
x^3)*ln(-15/16*x)+2*x*exp(3)^2+2*x^2*exp(3))/(x*ln(2*x)^3+(-3*x*ln(x)-3*x^2)*ln(2*x)^2+(3*x*ln(x)^2+6*x^2*ln(x
)+3*x^3)*ln(2*x)-x*ln(x)^3-3*x^2*ln(x)^2-3*x^3*ln(x)-x^4),x,method=_RETURNVERBOSE)
[Out]
exp(6)/(x-ln(2))^2-2*exp(3)/ln(2)*ln(x-ln(2))+8*exp(3)*ln(2)/(x-ln(2))-8*ln(2)*ln(x)+2/ln(2)*ln(x)*exp(3)-2*ln
(15)*exp(3)/(x-ln(2))+2*ln(x)*ln(15)+2*exp(3)/ln(2)*ln(ln(2)-x)+2*exp(3)*ln(-x)*x/ln(2)/(ln(2)-x)+ln(-x)^2
________________________________________________________________________________________
maxima [C] time = 0.55, size = 315, normalized size = 11.67
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((2*log(-15/16*x)*log(2*x)^3+(-6*log(-15/16*x)*log(x)-6*x*log(-15/16*x)+2*exp(3))*log(2*x)^2+(6*log(-
15/16*x)*log(x)^2+(12*x*log(-15/16*x)-4*exp(3))*log(x)+(2*x*exp(3)+6*x^2)*log(-15/16*x)-4*x*exp(3))*log(2*x)-2
*log(-15/16*x)*log(x)^3+(-6*x*log(-15/16*x)+2*exp(3))*log(x)^2+((-2*x*exp(3)-6*x^2)*log(-15/16*x)+4*x*exp(3))*
log(x)+(-2*x^2*exp(3)-2*x^3)*log(-15/16*x)+2*x*exp(3)^2+2*x^2*exp(3))/(x*log(2*x)^3+(-3*x*log(x)-3*x^2)*log(2*
x)^2+(3*x*log(x)^2+6*x^2*log(x)+3*x^3)*log(2*x)-x*log(x)^3-3*x^2*log(x)^2-3*x^3*log(x)-x^4),x, algorithm="maxi
ma")
[Out]
(log(x - log(2))/log(2) - log(x)/log(2) - 1/(x - log(2)))*e^3 - (2*x - log(2))*e^3*log(-15/16*x)/(x^2 - 2*x*lo
g(2) + log(2)^2) + (2*x - log(2))*e^3/(x^2 - 2*x*log(2) + log(2)^2) - e^3*log(x - log(2))/log(2) - (x*e^3*log(
2) - (x^2*log(2) - 2*x*log(2)^2 + log(2)^3)*log(x)^2 - ((I*pi + log(5))*log(2)^2 + log(3)*log(2)^2 - 4*log(2)^
3)*e^3 + (2*(-I*pi - log(5))*log(2)^3 - 2*log(3)*log(2)^3 + 8*log(2)^4 + (2*(-I*pi - log(5))*log(2) - 2*log(3)
*log(2) + 8*log(2)^2 - e^3)*x^2 - 2*e^3*log(2)^2 + 2*(2*(I*pi + log(5))*log(2)^2 + 2*log(3)*log(2)^2 - 8*log(2
)^3 + e^3*log(2))*x)*log(x))/(x^2*log(2) - 2*x*log(2)^2 + log(2)^3) + e^6/(x^2 - 2*x*log(2) + log(2)^2)
________________________________________________________________________________________
mupad [B] time = 3.56, size = 105, normalized size = 3.89
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(2*x*exp(6) - log(2*x)*(4*x*exp(3) - log(-(15*x)/16)*(2*x*exp(3) + 6*x^2) + log(x)*(4*exp(3) - 12*x*log(-
(15*x)/16)) - 6*log(-(15*x)/16)*log(x)^2) + 2*log(2*x)^3*log(-(15*x)/16) + log(x)*(4*x*exp(3) - log(-(15*x)/16
)*(2*x*exp(3) + 6*x^2)) + 2*x^2*exp(3) - log(2*x)^2*(6*x*log(-(15*x)/16) - 2*exp(3) + 6*log(-(15*x)/16)*log(x)
) - log(-(15*x)/16)*(2*x^2*exp(3) + 2*x^3) + log(x)^2*(2*exp(3) - 6*x*log(-(15*x)/16)) - 2*log(-(15*x)/16)*log
(x)^3)/(x*log(x)^3 + 3*x^3*log(x) + log(2*x)^2*(3*x*log(x) + 3*x^2) - log(2*x)*(3*x*log(x)^2 + 6*x^2*log(x) +
3*x^3) - x*log(2*x)^3 + 3*x^2*log(x)^2 + x^4),x)
[Out]
2*log(x)*(log(-(15*x)/16) - log(x)) + log(x)^2 + (exp(6) - 2*x*exp(3)*(log(-(15*x)/16) - log(x)) + 2*exp(3)*(l
og(2*x) - log(x))*(log(-(15*x)/16) - log(x)))/((log(2*x) - log(x))^2 - 2*x*(log(2*x) - log(x)) + x^2) - (2*exp
(3)*log(x))/(x - log(2*x) + log(x))
________________________________________________________________________________________
sympy [C] time = 10.79, size = 114, normalized size = 4.22
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((2*ln(-15/16*x)*ln(2*x)**3+(-6*ln(-15/16*x)*ln(x)-6*x*ln(-15/16*x)+2*exp(3))*ln(2*x)**2+(6*ln(-15/16
*x)*ln(x)**2+(12*x*ln(-15/16*x)-4*exp(3))*ln(x)+(2*x*exp(3)+6*x**2)*ln(-15/16*x)-4*x*exp(3))*ln(2*x)-2*ln(-15/
16*x)*ln(x)**3+(-6*x*ln(-15/16*x)+2*exp(3))*ln(x)**2+((-2*x*exp(3)-6*x**2)*ln(-15/16*x)+4*x*exp(3))*ln(x)+(-2*
x**2*exp(3)-2*x**3)*ln(-15/16*x)+2*x*exp(3)**2+2*x**2*exp(3))/(x*ln(2*x)**3+(-3*x*ln(x)-3*x**2)*ln(2*x)**2+(3*
x*ln(x)**2+6*x**2*ln(x)+3*x**3)*ln(2*x)-x*ln(x)**3-3*x**2*ln(x)**2-3*x**3*ln(x)-x**4),x)
[Out]
log(x)**2 + 2*(-4*log(2) + log(15) + I*pi)*log(x) + (x*(-8*exp(3)*log(2) + 2*exp(3)*log(15) + 2*I*pi*exp(3)) -
exp(6) - 2*exp(3)*log(2)*log(15) + 8*exp(3)*log(2)**2 - 2*I*pi*exp(3)*log(2))/(-x**2 + 2*x*log(2) - log(2)**2
) - 2*exp(3)*log(x)/(x - log(2))
________________________________________________________________________________________