3.41.75 2e6x+2e3x2+(2e3x22x3)log(15x16)+(4e3x+(2e3x6x2)log(15x16))log(x)+(2e36xlog(15x16))log2(x)2log(15x16)log3(x)+(4e3x+(2e3x+6x2)log(15x16)+(4e3+12xlog(15x16))log(x)+6log(15x16)log2(x))log(2x)+(2e36xlog(15x16)6log(15x16)log(x))log2(2x)+2log(15x16)log3(2x)x43x3log(x)3x2log2(x)xlog3(x)+(3x3+6x2log(x)+3xlog2(x))log(2x)+(3x23xlog(x))log2(2x)+xlog3(2x)dx

Optimal. Leaf size=27 (log(15x16)+e3x+log(x)log(2x))2

________________________________________________________________________________________

Rubi [F]  time = 2.49, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 2e6x+2e3x2+(2e3x22x3)log(15x16)+(4e3x+(2e3x6x2)log(15x16))log(x)+(2e36xlog(15x16))log2(x)2log(15x16)log3(x)+(4e3x+(2e3x+6x2)log(15x16)+(4e3+12xlog(15x16))log(x)+6log(15x16)log2(x))log(2x)+(2e36xlog(15x16)6log(15x16)log(x))log2(2x)+2log(15x16)log3(2x)x43x3log(x)3x2log2(x)xlog3(x)+(3x3+6x2log(x)+3xlog2(x))log(2x)+(3x23xlog(x))log2(2x)+xlog3(2x)dx

Verification is not applicable to the result.

[In]

Int[(2*E^6*x + 2*E^3*x^2 + (-2*E^3*x^2 - 2*x^3)*Log[(-15*x)/16] + (4*E^3*x + (-2*E^3*x - 6*x^2)*Log[(-15*x)/16
])*Log[x] + (2*E^3 - 6*x*Log[(-15*x)/16])*Log[x]^2 - 2*Log[(-15*x)/16]*Log[x]^3 + (-4*E^3*x + (2*E^3*x + 6*x^2
)*Log[(-15*x)/16] + (-4*E^3 + 12*x*Log[(-15*x)/16])*Log[x] + 6*Log[(-15*x)/16]*Log[x]^2)*Log[2*x] + (2*E^3 - 6
*x*Log[(-15*x)/16] - 6*Log[(-15*x)/16]*Log[x])*Log[2*x]^2 + 2*Log[(-15*x)/16]*Log[2*x]^3)/(-x^4 - 3*x^3*Log[x]
 - 3*x^2*Log[x]^2 - x*Log[x]^3 + (3*x^3 + 6*x^2*Log[x] + 3*x*Log[x]^2)*Log[2*x] + (-3*x^2 - 3*x*Log[x])*Log[2*
x]^2 + x*Log[2*x]^3),x]

[Out]

-2*Log[16/15]*Log[2]^2*Defer[Int][(x + Log[x] - Log[2*x])^(-3), x] - 2*(E^3 - Log[16/15]*Log[2])*(E^3 - Log[4]
)*Defer[Int][(x + Log[x] - Log[2*x])^(-3), x] - 2*Log[2]^2*(E^3 - Log[16/15]*Log[2])*Defer[Int][1/(x*(x + Log[
x] - Log[2*x])^3), x] - 2*(E^3 - Log[16/15]*Log[2])*Defer[Int][x/(x + Log[x] - Log[2*x])^3, x] - 2*Log[16/15]*
(E^3 - Log[4])*Defer[Int][x/(x + Log[x] - Log[2*x])^3, x] - 2*Log[16/15]*Defer[Int][x^2/(x + Log[x] - Log[2*x]
)^3, x] + 2*Log[2]^2*Defer[Int][Log[-x]/(x + Log[x] - Log[2*x])^3, x] - 2*Log[2]*(E^3 - Log[4])*Defer[Int][Log
[-x]/(x + Log[x] - Log[2*x])^3, x] - 2*Log[2]^3*Defer[Int][Log[-x]/(x*(x + Log[x] - Log[2*x])^3), x] - 2*Log[2
]*Defer[Int][(x*Log[-x])/(x + Log[x] - Log[2*x])^3, x] + 2*(E^3 - Log[4])*Defer[Int][(x*Log[-x])/(x + Log[x] -
 Log[2*x])^3, x] + 2*Defer[Int][(x^2*Log[-x])/(x + Log[x] - Log[2*x])^3, x]

Rubi steps

integral=2(x2+log2(2)+x(e3log(4)))(e3log(1615)(xlog(2))(x+log(2))log(x))x(x+log(x)log(2x))3dx=2(x2+log2(2)+x(e3log(4)))(e3log(1615)(xlog(2))(x+log(2))log(x))x(x+log(x)log(2x))3dx=2(x(xlog(1615)e3(1log(1615)log(2)e3)+xlog(x)log(2)log(x))(x+log(x)log(2x))3+log2(2)(xlog(1615)e3(1log(1615)log(2)e3)+xlog(x)log(2)log(x))x(x+log(x)log(2x))3+e3(1log(4)e3)(xlog(1615)e3(1log(1615)log(2)e3)+xlog(x)log(2)log(x))(x+log(x)log(2x))3)dx=2x(xlog(1615)e3(1log(1615)log(2)e3)+xlog(x)log(2)log(x))(x+log(x)log(2x))3dx+(2log2(2))xlog(1615)e3(1log(1615)log(2)e3)+xlog(x)log(2)log(x)x(x+log(x)log(2x))3dx+(2(e3log(4)))xlog(1615)e3(1log(1615)log(2)e3)+xlog(x)log(2)log(x)(x+log(x)log(2x))3dx=2(x2log(1615)(x+log(x)log(2x))3x(e3log(1615)log(2))(x+log(x)log(2x))3+x2log(x)(x+log(x)log(2x))3xlog(2)log(x)(x+log(x)log(2x))3)dx+(2log2(2))e3+log(1615)(x+log(2))+(xlog(2))log(x)x(x+log(x)log(2x))3dx+(2(e3log(4)))e3+log(1615)(x+log(2))+(xlog(2))log(x)(x+log(x)log(2x))3dx=2x2log(x)(x+log(x)log(2x))3dx(2log(1615))x2(x+log(x)log(2x))3dx(2log(2))xlog(x)(x+log(x)log(2x))3dx+(2log2(2))(log(1615)(x+log(x)log(2x))3e3(1log(1615)log(2)e3)x(x+log(x)log(2x))3+log(x)(x+log(x)log(2x))3log(2)log(x)x(x+log(x)log(2x))3)dx(2(e3log(1615)log(2)))x(x+log(x)log(2x))3dx+(2(e3log(4)))(xlog(1615)(x+log(x)log(2x))3e3(1log(1615)log(2)e3)(x+log(x)log(2x))3+xlog(x)(x+log(x)log(2x))3log(2)log(x)(x+log(x)log(2x))3)dx=2x2log(x)(x+log(x)log(2x))3dx(2log(1615))x2(x+log(x)log(2x))3dx(2log(2))xlog(x)(x+log(x)log(2x))3dx+(2log2(2))log(x)(x+log(x)log(2x))3dx(2log(1615)log2(2))1(x+log(x)log(2x))3dx(2log3(2))log(x)x(x+log(x)log(2x))3dx(2(e3log(1615)log(2)))x(x+log(x)log(2x))3dx(2log2(2)(e3log(1615)log(2)))1x(x+log(x)log(2x))3dx+(2(e3log(4)))xlog(x)(x+log(x)log(2x))3dx(2log(1615)(e3log(4)))x(x+log(x)log(2x))3dx(2log(2)(e3log(4)))log(x)(x+log(x)log(2x))3dx(2(e3log(1615)log(2))(e3log(4)))1(x+log(x)log(2x))3dx

________________________________________________________________________________________

Mathematica [B]  time = 1.53, size = 295, normalized size = 10.93 log3(2)log2(x)2log(x)(log(1615)log3(2)+(log2(4)+log(2)log(16))log(x))+e6log(2)(log(x)log(2x))2(x+log(x)log(2x))2+2log(x)(e3log2(2)+(log2(4)+log(2)log(16))log(x))(log(x)log(2x))x+log(x)log(2x)+2(log(x)log(2x))(log2(2)(e3log(1615)log(2))+2log(1615)log3(x)+(e3(1+log(1615))+log(1615)log(8))log2(2x)2log(1615)log3(2x)+2log(x)log(2x)(e3(1+log(1615))log(1615)log(8)+3log(1615)log(2x))log2(x)(e3(1+log(1615))log(1615)log(8)+6log(1615)log(2x)))x+log(x)log(2x)(log(x)log(2x))3

Antiderivative was successfully verified.

[In]

Integrate[(2*E^6*x + 2*E^3*x^2 + (-2*E^3*x^2 - 2*x^3)*Log[(-15*x)/16] + (4*E^3*x + (-2*E^3*x - 6*x^2)*Log[(-15
*x)/16])*Log[x] + (2*E^3 - 6*x*Log[(-15*x)/16])*Log[x]^2 - 2*Log[(-15*x)/16]*Log[x]^3 + (-4*E^3*x + (2*E^3*x +
 6*x^2)*Log[(-15*x)/16] + (-4*E^3 + 12*x*Log[(-15*x)/16])*Log[x] + 6*Log[(-15*x)/16]*Log[x]^2)*Log[2*x] + (2*E
^3 - 6*x*Log[(-15*x)/16] - 6*Log[(-15*x)/16]*Log[x])*Log[2*x]^2 + 2*Log[(-15*x)/16]*Log[2*x]^3)/(-x^4 - 3*x^3*
Log[x] - 3*x^2*Log[x]^2 - x*Log[x]^3 + (3*x^3 + 6*x^2*Log[x] + 3*x*Log[x]^2)*Log[2*x] + (-3*x^2 - 3*x*Log[x])*
Log[2*x]^2 + x*Log[2*x]^3),x]

[Out]

-((Log[2]^3*Log[-x]^2 - 2*Log[x]*(Log[16/15]*Log[2]^3 + (-Log[4]^2 + Log[2]*Log[16])*Log[x]) + (E^6*Log[2]*(Lo
g[x] - Log[2*x])^2)/(x + Log[x] - Log[2*x])^2 + (2*Log[-x]*(E^3*Log[2]^2 + (-Log[4]^2 + Log[2]*Log[16])*Log[x]
)*(Log[x] - Log[2*x]))/(x + Log[x] - Log[2*x]) + (2*(Log[x] - Log[2*x])*(Log[2]^2*(E^3 - Log[16/15]*Log[2]) +
2*Log[16/15]*Log[x]^3 + (-(E^3*(1 + Log[16/15])) + Log[16/15]*Log[8])*Log[2*x]^2 - 2*Log[16/15]*Log[2*x]^3 + 2
*Log[x]*Log[2*x]*(E^3*(1 + Log[16/15]) - Log[16/15]*Log[8] + 3*Log[16/15]*Log[2*x]) - Log[x]^2*(E^3*(1 + Log[1
6/15]) - Log[16/15]*Log[8] + 6*Log[16/15]*Log[2*x])))/(x + Log[x] - Log[2*x]))/(Log[x] - Log[2*x])^3)

________________________________________________________________________________________

fricas [B]  time = 0.87, size = 85, normalized size = 3.15 (x22(x+log(1615))log(3215)+log(3215)2+2xlog(1615)+log(1615)2)log(1516x)22(xe3e3log(3215)+e3log(1615))log(1516x)+e6x22(x+log(1615))log(3215)+log(3215)2+2xlog(1615)+log(1615)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*log(-15/16*x)*log(2*x)^3+(-6*log(-15/16*x)*log(x)-6*x*log(-15/16*x)+2*exp(3))*log(2*x)^2+(6*log(-
15/16*x)*log(x)^2+(12*x*log(-15/16*x)-4*exp(3))*log(x)+(2*x*exp(3)+6*x^2)*log(-15/16*x)-4*x*exp(3))*log(2*x)-2
*log(-15/16*x)*log(x)^3+(-6*x*log(-15/16*x)+2*exp(3))*log(x)^2+((-2*x*exp(3)-6*x^2)*log(-15/16*x)+4*x*exp(3))*
log(x)+(-2*x^2*exp(3)-2*x^3)*log(-15/16*x)+2*x*exp(3)^2+2*x^2*exp(3))/(x*log(2*x)^3+(-3*x*log(x)-3*x^2)*log(2*
x)^2+(3*x*log(x)^2+6*x^2*log(x)+3*x^3)*log(2*x)-x*log(x)^3-3*x^2*log(x)^2-3*x^3*log(x)-x^4),x, algorithm="fric
as")

[Out]

((x^2 - 2*(x + log(16/15))*log(32/15) + log(32/15)^2 + 2*x*log(16/15) + log(16/15)^2)*log(-15/16*x)^2 - 2*(x*e
^3 - e^3*log(32/15) + e^3*log(16/15))*log(-15/16*x) + e^6)/(x^2 - 2*(x + log(16/15))*log(32/15) + log(32/15)^2
 + 2*x*log(16/15) + log(16/15)^2)

________________________________________________________________________________________

giac [B]  time = 0.24, size = 85, normalized size = 3.15 x2log(1516x)22xlog(2)log(1516x)2+log(2)2log(1516x)2+8xe3log(2)8e3log(2)22xe3log(15x)+2e3log(2)log(15x)+e6x22xlog(2)+log(2)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*log(-15/16*x)*log(2*x)^3+(-6*log(-15/16*x)*log(x)-6*x*log(-15/16*x)+2*exp(3))*log(2*x)^2+(6*log(-
15/16*x)*log(x)^2+(12*x*log(-15/16*x)-4*exp(3))*log(x)+(2*x*exp(3)+6*x^2)*log(-15/16*x)-4*x*exp(3))*log(2*x)-2
*log(-15/16*x)*log(x)^3+(-6*x*log(-15/16*x)+2*exp(3))*log(x)^2+((-2*x*exp(3)-6*x^2)*log(-15/16*x)+4*x*exp(3))*
log(x)+(-2*x^2*exp(3)-2*x^3)*log(-15/16*x)+2*x*exp(3)^2+2*x^2*exp(3))/(x*log(2*x)^3+(-3*x*log(x)-3*x^2)*log(2*
x)^2+(3*x*log(x)^2+6*x^2*log(x)+3*x^3)*log(2*x)-x*log(x)^3-3*x^2*log(x)^2-3*x^3*log(x)-x^4),x, algorithm="giac
")

[Out]

(x^2*log(-15/16*x)^2 - 2*x*log(2)*log(-15/16*x)^2 + log(2)^2*log(-15/16*x)^2 + 8*x*e^3*log(2) - 8*e^3*log(2)^2
 - 2*x*e^3*log(-15*x) + 2*e^3*log(2)*log(-15*x) + e^6)/(x^2 - 2*x*log(2) + log(2)^2)

________________________________________________________________________________________

maple [B]  time = 0.57, size = 120, normalized size = 4.44




method result size



default e6(xln(2))22e3ln(xln(2))ln(2)+8e3ln(2)xln(2)8ln(2)ln(x)+2ln(x)e3ln(2)2ln(15)e3xln(2)+2ln(x)ln(15)+2e3ln(ln(2)x)ln(2)+2e3ln(x)xln(2)(ln(2)x)+ln(x)2 120
risch ln(x)2+4ie3ln(x)2iln(2)2ix+8xe3ln(5)8xe3ln(3)+4e6+8iπe3ln(2)8iπe3x+8iπln(2)2ln((2πcsgn(ix)2+2πcsgn(ix)3+2π2iln(3)+8iln(2)2iln(5))x)+8iπln((2πcsgn(ix)2+2πcsgn(ix)3+2π2iln(3)+8iln(2)2iln(5))x)x216ln(3)ln(2)ln((2πcsgn(ix)2+2πcsgn(ix)3+2π2iln(3)+8iln(2)2iln(5))x)x16ln(2)ln((2πcsgn(ix)2+2πcsgn(ix)3+2π2iln(3)+8iln(2)2iln(5))x)ln(5)x+32xe3ln(2)32e3ln(2)2+8ln(3)e3ln(2)+8e3ln(2)ln(5)+8ln(3)ln(2)2ln((2πcsgn(ix)2+2πcsgn(ix)3+2π2iln(3)+8iln(2)2iln(5))x)+8ln(3)ln((2πcsgn(ix)2+2πcsgn(ix)3+2π2iln(3)+8iln(2)2iln(5))x)x2+8ln(2)2ln((2πcsgn(ix)2+2πcsgn(ix)3+2π2iln(3)+8iln(2)2iln(5))x)ln(5)+64ln(2)2ln((2πcsgn(ix)2+2πcsgn(ix)3+2π2iln(3)+8iln(2)2iln(5))x)x32ln(2)ln((2πcsgn(ix)2+2πcsgn(ix)3+2π2iln(3)+8iln(2)2iln(5))x)x2+8ln((2πcsgn(ix)2+2πcsgn(ix)3+2π2iln(3)+8iln(2)2iln(5))x)ln(5)x216iπln(2)ln((2πcsgn(ix)2+2πcsgn(ix)3+2π2iln(3)+8iln(2)2iln(5))x)xcsgn(ix)3+16iπln(2)ln((2πcsgn(ix)2+2πcsgn(ix)3+2π2iln(3)+8iln(2)2iln(5))x)xcsgn(ix)232ln(2)3ln((2πcsgn(ix)2+2πcsgn(ix)3+2π2iln(3)+8iln(2)2iln(5))x)+8iπe3xcsgn(ix)28iπln((2πcsgn(ix)2+2πcsgn(ix)3+2π2iln(3)+8iln(2)2iln(5))x)x2csgn(ix)28iπe3ln(2)csgn(ix)28iπe3xcsgn(ix)3+8iπe3ln(2)csgn(ix)3+8iπln(2)2ln((2πcsgn(ix)2+2πcsgn(ix)3+2π2iln(3)+8iln(2)2iln(5))x)csgn(ix)38iπln(2)2ln((2πcsgn(ix)2+2πcsgn(ix)3+2π2iln(3)+8iln(2)2iln(5))x)csgn(ix)2+8iπln((2πcsgn(ix)2+2πcsgn(ix)3+2π2iln(3)+8iln(2)2iln(5))x)x2csgn(ix)316iπln(2)ln((2πcsgn(ix)2+2πcsgn(ix)3+2π2iln(3)+8iln(2)2iln(5))x)x4ln(2)28xln(2)+4x2 1096



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*ln(-15/16*x)*ln(2*x)^3+(-6*ln(-15/16*x)*ln(x)-6*x*ln(-15/16*x)+2*exp(3))*ln(2*x)^2+(6*ln(-15/16*x)*ln(x
)^2+(12*x*ln(-15/16*x)-4*exp(3))*ln(x)+(2*x*exp(3)+6*x^2)*ln(-15/16*x)-4*x*exp(3))*ln(2*x)-2*ln(-15/16*x)*ln(x
)^3+(-6*x*ln(-15/16*x)+2*exp(3))*ln(x)^2+((-2*x*exp(3)-6*x^2)*ln(-15/16*x)+4*x*exp(3))*ln(x)+(-2*x^2*exp(3)-2*
x^3)*ln(-15/16*x)+2*x*exp(3)^2+2*x^2*exp(3))/(x*ln(2*x)^3+(-3*x*ln(x)-3*x^2)*ln(2*x)^2+(3*x*ln(x)^2+6*x^2*ln(x
)+3*x^3)*ln(2*x)-x*ln(x)^3-3*x^2*ln(x)^2-3*x^3*ln(x)-x^4),x,method=_RETURNVERBOSE)

[Out]

exp(6)/(x-ln(2))^2-2*exp(3)/ln(2)*ln(x-ln(2))+8*exp(3)*ln(2)/(x-ln(2))-8*ln(2)*ln(x)+2/ln(2)*ln(x)*exp(3)-2*ln
(15)*exp(3)/(x-ln(2))+2*ln(x)*ln(15)+2*exp(3)/ln(2)*ln(ln(2)-x)+2*exp(3)*ln(-x)*x/ln(2)/(ln(2)-x)+ln(-x)^2

________________________________________________________________________________________

maxima [C]  time = 0.55, size = 315, normalized size = 11.67 (log(xlog(2))log(2)log(x)log(2)1xlog(2))e3(2xlog(2))e3log(1516x)x22xlog(2)+log(2)2+(2xlog(2))e3x22xlog(2)+log(2)2e3log(xlog(2))log(2)xe3log(2)(x2log(2)2xlog(2)2+log(2)3)log(x)2((iπ+log(5))log(2)2+log(3)log(2)24log(2)3)e3+(2(iπlog(5))log(2)32log(3)log(2)3+8log(2)4+(2(iπlog(5))log(2)2log(3)log(2)+8log(2)2e3)x22e3log(2)2+2(2(iπ+log(5))log(2)2+2log(3)log(2)28log(2)3+e3log(2))x)log(x)x2log(2)2xlog(2)2+log(2)3+e6x22xlog(2)+log(2)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*log(-15/16*x)*log(2*x)^3+(-6*log(-15/16*x)*log(x)-6*x*log(-15/16*x)+2*exp(3))*log(2*x)^2+(6*log(-
15/16*x)*log(x)^2+(12*x*log(-15/16*x)-4*exp(3))*log(x)+(2*x*exp(3)+6*x^2)*log(-15/16*x)-4*x*exp(3))*log(2*x)-2
*log(-15/16*x)*log(x)^3+(-6*x*log(-15/16*x)+2*exp(3))*log(x)^2+((-2*x*exp(3)-6*x^2)*log(-15/16*x)+4*x*exp(3))*
log(x)+(-2*x^2*exp(3)-2*x^3)*log(-15/16*x)+2*x*exp(3)^2+2*x^2*exp(3))/(x*log(2*x)^3+(-3*x*log(x)-3*x^2)*log(2*
x)^2+(3*x*log(x)^2+6*x^2*log(x)+3*x^3)*log(2*x)-x*log(x)^3-3*x^2*log(x)^2-3*x^3*log(x)-x^4),x, algorithm="maxi
ma")

[Out]

(log(x - log(2))/log(2) - log(x)/log(2) - 1/(x - log(2)))*e^3 - (2*x - log(2))*e^3*log(-15/16*x)/(x^2 - 2*x*lo
g(2) + log(2)^2) + (2*x - log(2))*e^3/(x^2 - 2*x*log(2) + log(2)^2) - e^3*log(x - log(2))/log(2) - (x*e^3*log(
2) - (x^2*log(2) - 2*x*log(2)^2 + log(2)^3)*log(x)^2 - ((I*pi + log(5))*log(2)^2 + log(3)*log(2)^2 - 4*log(2)^
3)*e^3 + (2*(-I*pi - log(5))*log(2)^3 - 2*log(3)*log(2)^3 + 8*log(2)^4 + (2*(-I*pi - log(5))*log(2) - 2*log(3)
*log(2) + 8*log(2)^2 - e^3)*x^2 - 2*e^3*log(2)^2 + 2*(2*(I*pi + log(5))*log(2)^2 + 2*log(3)*log(2)^2 - 8*log(2
)^3 + e^3*log(2))*x)*log(x))/(x^2*log(2) - 2*x*log(2)^2 + log(2)^3) + e^6/(x^2 - 2*x*log(2) + log(2)^2)

________________________________________________________________________________________

mupad [B]  time = 3.56, size = 105, normalized size = 3.89 2ln(x)(ln(15x16)ln(x))+ln(x)2+e62xe3(ln(15x16)ln(x))+2e3(ln(2x)ln(x))(ln(15x16)ln(x))(ln(2x)ln(x))22x(ln(2x)ln(x))+x22e3ln(x)xln(2x)+ln(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(2*x*exp(6) - log(2*x)*(4*x*exp(3) - log(-(15*x)/16)*(2*x*exp(3) + 6*x^2) + log(x)*(4*exp(3) - 12*x*log(-
(15*x)/16)) - 6*log(-(15*x)/16)*log(x)^2) + 2*log(2*x)^3*log(-(15*x)/16) + log(x)*(4*x*exp(3) - log(-(15*x)/16
)*(2*x*exp(3) + 6*x^2)) + 2*x^2*exp(3) - log(2*x)^2*(6*x*log(-(15*x)/16) - 2*exp(3) + 6*log(-(15*x)/16)*log(x)
) - log(-(15*x)/16)*(2*x^2*exp(3) + 2*x^3) + log(x)^2*(2*exp(3) - 6*x*log(-(15*x)/16)) - 2*log(-(15*x)/16)*log
(x)^3)/(x*log(x)^3 + 3*x^3*log(x) + log(2*x)^2*(3*x*log(x) + 3*x^2) - log(2*x)*(3*x*log(x)^2 + 6*x^2*log(x) +
3*x^3) - x*log(2*x)^3 + 3*x^2*log(x)^2 + x^4),x)

[Out]

2*log(x)*(log(-(15*x)/16) - log(x)) + log(x)^2 + (exp(6) - 2*x*exp(3)*(log(-(15*x)/16) - log(x)) + 2*exp(3)*(l
og(2*x) - log(x))*(log(-(15*x)/16) - log(x)))/((log(2*x) - log(x))^2 - 2*x*(log(2*x) - log(x)) + x^2) - (2*exp
(3)*log(x))/(x - log(2*x) + log(x))

________________________________________________________________________________________

sympy [C]  time = 10.79, size = 114, normalized size = 4.22 log(x)2+2(4log(2)+log(15)+iπ)log(x)+x(8e3log(2)+2e3log(15)+2iπe3)e62e3log(2)log(15)+8e3log(2)22iπe3log(2)x2+2xlog(2)log(2)22e3log(x)xlog(2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*ln(-15/16*x)*ln(2*x)**3+(-6*ln(-15/16*x)*ln(x)-6*x*ln(-15/16*x)+2*exp(3))*ln(2*x)**2+(6*ln(-15/16
*x)*ln(x)**2+(12*x*ln(-15/16*x)-4*exp(3))*ln(x)+(2*x*exp(3)+6*x**2)*ln(-15/16*x)-4*x*exp(3))*ln(2*x)-2*ln(-15/
16*x)*ln(x)**3+(-6*x*ln(-15/16*x)+2*exp(3))*ln(x)**2+((-2*x*exp(3)-6*x**2)*ln(-15/16*x)+4*x*exp(3))*ln(x)+(-2*
x**2*exp(3)-2*x**3)*ln(-15/16*x)+2*x*exp(3)**2+2*x**2*exp(3))/(x*ln(2*x)**3+(-3*x*ln(x)-3*x**2)*ln(2*x)**2+(3*
x*ln(x)**2+6*x**2*ln(x)+3*x**3)*ln(2*x)-x*ln(x)**3-3*x**2*ln(x)**2-3*x**3*ln(x)-x**4),x)

[Out]

log(x)**2 + 2*(-4*log(2) + log(15) + I*pi)*log(x) + (x*(-8*exp(3)*log(2) + 2*exp(3)*log(15) + 2*I*pi*exp(3)) -
 exp(6) - 2*exp(3)*log(2)*log(15) + 8*exp(3)*log(2)**2 - 2*I*pi*exp(3)*log(2))/(-x**2 + 2*x*log(2) - log(2)**2
) - 2*exp(3)*log(x)/(x - log(2))

________________________________________________________________________________________