3.41.76
Optimal. Leaf size=26
________________________________________________________________________________________
Rubi [F] time = 3.32, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[((-2*x - x^2 + 2*x^3 + E^x*(-1 - x + x^2))*Log[x] + (-(E^x*x) - x^2)*Log[x]*Log[E^x*x + x^2] + (-2*E^x*x -
2*x^2 + (2*E^x + 2*x)*Log[E^x*x + x^2])*Log[Log[x]] + (E^x + 2*x - x^2)*Log[x]*Log[Log[x]]^2)/((2*E^x*x + 2*x
^2)*Log[x]),x]
[Out]
x^2/2 + Log[x]/2 - (x*Log[E^x*x + x^2])/2 - Log[x]*Log[Log[x]] + (Log[x]*Log[Log[x]]^2)/2 - Defer[Int][(E^x +
x)^(-1), x]/2 + Defer[Int][x/(E^x + x), x]/2 - Defer[Int][Log[Log[x]]/Log[x], x] + Defer[Int][(Log[E^x*x + x^2
]*Log[Log[x]])/(x*Log[x]), x] + Defer[Int][Log[Log[x]]^2/(E^x + x), x]/2 - Defer[Int][(x*Log[Log[x]]^2)/(E^x +
x), x]/2
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.25, size = 51, normalized size = 1.96
Antiderivative was successfully verified.
[In]
Integrate[((-2*x - x^2 + 2*x^3 + E^x*(-1 - x + x^2))*Log[x] + (-(E^x*x) - x^2)*Log[x]*Log[E^x*x + x^2] + (-2*E
^x*x - 2*x^2 + (2*E^x + 2*x)*Log[E^x*x + x^2])*Log[Log[x]] + (E^x + 2*x - x^2)*Log[x]*Log[Log[x]]^2)/((2*E^x*x
+ 2*x^2)*Log[x]),x]
[Out]
(x + x^2 - Log[x] - Log[E^x + x] - x*Log[x*(E^x + x)] - (x - Log[x*(E^x + x)])*Log[Log[x]]^2)/2
________________________________________________________________________________________
fricas [A] time = 1.01, size = 43, normalized size = 1.65
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((exp(x)-x^2+2*x)*log(x)*log(log(x))^2+((2*exp(x)+2*x)*log(exp(x)*x+x^2)-2*exp(x)*x-2*x^2)*log(log(x
))+(-exp(x)*x-x^2)*log(x)*log(exp(x)*x+x^2)+((x^2-x-1)*exp(x)+2*x^3-x^2-2*x)*log(x))/(2*exp(x)*x+2*x^2)/log(x)
,x, algorithm="fricas")
[Out]
-1/2*(x - log(x^2 + x*e^x))*log(log(x))^2 + 1/2*x^2 - 1/2*(x + 1)*log(x^2 + x*e^x) + 1/2*x
________________________________________________________________________________________
giac [B] time = 0.24, size = 62, normalized size = 2.38
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((exp(x)-x^2+2*x)*log(x)*log(log(x))^2+((2*exp(x)+2*x)*log(exp(x)*x+x^2)-2*exp(x)*x-2*x^2)*log(log(x
))+(-exp(x)*x-x^2)*log(x)*log(exp(x)*x+x^2)+((x^2-x-1)*exp(x)+2*x^3-x^2-2*x)*log(x))/(2*exp(x)*x+2*x^2)/log(x)
,x, algorithm="giac")
[Out]
-1/2*x*log(log(x))^2 + 1/2*log(x + e^x)*log(log(x))^2 + 1/2*log(x)*log(log(x))^2 + 1/2*x^2 - 1/2*x*log(x + e^x
) - 1/2*x*log(x) + 1/2*x - 1/2*log(x + e^x) - 1/2*log(x)
________________________________________________________________________________________
maple [C] time = 0.13, size = 252, normalized size = 9.69
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((exp(x)-x^2+2*x)*ln(x)*ln(ln(x))^2+((2*exp(x)+2*x)*ln(exp(x)*x+x^2)-2*exp(x)*x-2*x^2)*ln(ln(x))+(-exp(x)*
x-x^2)*ln(x)*ln(exp(x)*x+x^2)+((x^2-x-1)*exp(x)+2*x^3-x^2-2*x)*ln(x))/(2*exp(x)*x+2*x^2)/ln(x),x,method=_RETUR
NVERBOSE)
[Out]
(1/2*ln(ln(x))^2-1/2*x)*ln(exp(x)+x)-1/2*x*ln(ln(x))^2+1/2*ln(x)*ln(ln(x))^2+1/4*I*x*Pi*csgn(I*x)*csgn(I*(exp(
x)+x))*csgn(I*x*(exp(x)+x))+1/4*I*ln(ln(x))^2*Pi*csgn(I*x)*csgn(I*x*(exp(x)+x))^2+1/4*I*ln(ln(x))^2*Pi*csgn(I*
(exp(x)+x))*csgn(I*x*(exp(x)+x))^2-1/4*I*ln(ln(x))^2*Pi*csgn(I*x)*csgn(I*(exp(x)+x))*csgn(I*x*(exp(x)+x))-1/2*
x*ln(x)+1/4*I*x*Pi*csgn(I*x*(exp(x)+x))^3-1/4*I*x*Pi*csgn(I*(exp(x)+x))*csgn(I*x*(exp(x)+x))^2-1/4*I*x*Pi*csgn
(I*x)*csgn(I*x*(exp(x)+x))^2-1/4*I*ln(ln(x))^2*Pi*csgn(I*x*(exp(x)+x))^3+1/2*x^2-1/2*ln(x)+1/2*x-1/2*ln(exp(x)
+x)
________________________________________________________________________________________
maxima [A] time = 0.42, size = 46, normalized size = 1.77
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((exp(x)-x^2+2*x)*log(x)*log(log(x))^2+((2*exp(x)+2*x)*log(exp(x)*x+x^2)-2*exp(x)*x-2*x^2)*log(log(x
))+(-exp(x)*x-x^2)*log(x)*log(exp(x)*x+x^2)+((x^2-x-1)*exp(x)+2*x^3-x^2-2*x)*log(x))/(2*exp(x)*x+2*x^2)/log(x)
,x, algorithm="maxima")
[Out]
-1/2*(x - log(x))*log(log(x))^2 + 1/2*x^2 + 1/2*(log(log(x))^2 - x - 1)*log(x + e^x) - 1/2*(x + 1)*log(x) + 1/
2*x
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(log(log(x))*(2*x*exp(x) - log(x*exp(x) + x^2)*(2*x + 2*exp(x)) + 2*x^2) + log(x)*(2*x + exp(x)*(x - x^2
+ 1) + x^2 - 2*x^3) - log(log(x))^2*log(x)*(2*x + exp(x) - x^2) + log(x*exp(x) + x^2)*log(x)*(x*exp(x) + x^2))
/(log(x)*(2*x*exp(x) + 2*x^2)),x)
[Out]
int(-(log(log(x))*(2*x*exp(x) - log(x*exp(x) + x^2)*(2*x + 2*exp(x)) + 2*x^2) + log(x)*(2*x + exp(x)*(x - x^2
+ 1) + x^2 - 2*x^3) - log(log(x))^2*log(x)*(2*x + exp(x) - x^2) + log(x*exp(x) + x^2)*log(x)*(x*exp(x) + x^2))
/(log(x)*(2*x*exp(x) + 2*x^2)), x)
________________________________________________________________________________________
sympy [B] time = 1.74, size = 53, normalized size = 2.04
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((exp(x)-x**2+2*x)*ln(x)*ln(ln(x))**2+((2*exp(x)+2*x)*ln(exp(x)*x+x**2)-2*exp(x)*x-2*x**2)*ln(ln(x))
+(-exp(x)*x-x**2)*ln(x)*ln(exp(x)*x+x**2)+((x**2-x-1)*exp(x)+2*x**3-x**2-2*x)*ln(x))/(2*exp(x)*x+2*x**2)/ln(x)
,x)
[Out]
x**2/2 - x*log(log(x))**2/2 + x/2 + (-x/2 + log(log(x))**2/2)*log(x**2 + x*exp(x)) - log(x)/2 - log(x + exp(x)
)/2
________________________________________________________________________________________