3.41.76 (2xx2+2x3+ex(1x+x2))log(x)+(exxx2)log(x)log(exx+x2)+(2exx2x2+(2ex+2x)log(exx+x2))log(log(x))+(ex+2xx2)log(x)log2(log(x))(2exx+2x2)log(x)dx

Optimal. Leaf size=26 12(x+log(x(ex+x)))(1x+log2(log(x)))

________________________________________________________________________________________

Rubi [F]  time = 3.32, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} (2xx2+2x3+ex(1x+x2))log(x)+(exxx2)log(x)log(exx+x2)+(2exx2x2+(2ex+2x)log(exx+x2))log(log(x))+(ex+2xx2)log(x)log2(log(x))(2exx+2x2)log(x)dx

Verification is not applicable to the result.

[In]

Int[((-2*x - x^2 + 2*x^3 + E^x*(-1 - x + x^2))*Log[x] + (-(E^x*x) - x^2)*Log[x]*Log[E^x*x + x^2] + (-2*E^x*x -
 2*x^2 + (2*E^x + 2*x)*Log[E^x*x + x^2])*Log[Log[x]] + (E^x + 2*x - x^2)*Log[x]*Log[Log[x]]^2)/((2*E^x*x + 2*x
^2)*Log[x]),x]

[Out]

x^2/2 + Log[x]/2 - (x*Log[E^x*x + x^2])/2 - Log[x]*Log[Log[x]] + (Log[x]*Log[Log[x]]^2)/2 - Defer[Int][(E^x +
x)^(-1), x]/2 + Defer[Int][x/(E^x + x), x]/2 - Defer[Int][Log[Log[x]]/Log[x], x] + Defer[Int][(Log[E^x*x + x^2
]*Log[Log[x]])/(x*Log[x]), x] + Defer[Int][Log[Log[x]]^2/(E^x + x), x]/2 - Defer[Int][(x*Log[Log[x]]^2)/(E^x +
 x), x]/2

Rubi steps

integral=(2xx2+2x3+ex(1x+x2))log(x)+(exxx2)log(x)log(exx+x2)+(2exx2x2+(2ex+2x)log(exx+x2))log(log(x))+(ex+2xx2)log(x)log2(log(x))2x(ex+x)log(x)dx=12(2xx2+2x3+ex(1x+x2))log(x)+(exxx2)log(x)log(exx+x2)+(2exx2x2+(2ex+2x)log(exx+x2))log(log(x))+(ex+2xx2)log(x)log2(log(x))x(ex+x)log(x)dx=122(xlog(x(ex+x)))log(log(x))log(x)ex+2x+exx+x2exx22x3+x(ex+x)log(x(ex+x))+(ex+(2+x)x)log2(log(x))ex+xxdx=12((1+x)(1+xlog2(log(x)))ex+x+log(x)xlog(x)+x2log(x)xlog(x)log(x(ex+x))2xlog(log(x))+2log(x(ex+x))log(log(x))+log(x)log2(log(x))xlog(x))dx=12(1+x)(1+xlog2(log(x)))ex+xdx+12log(x)xlog(x)+x2log(x)xlog(x)log(x(ex+x))2xlog(log(x))+2log(x(ex+x))log(log(x))+log(x)log2(log(x))xlog(x)dx=12(1x+x2xlog(x(ex+x))x2(xlog(x(ex+x)))log(log(x))xlog(x)+log2(log(x))x)dx+12(1+xlog2(log(x))ex+x+x(1+xlog2(log(x)))ex+x)dx=121x+x2xlog(x(ex+x))xdx+12log2(log(x))xdx121+xlog2(log(x))ex+xdx+12x(1+xlog2(log(x)))ex+xdx(xlog(x(ex+x)))log(log(x))xlog(x)dx=12(1x+x2xlog(exx+x2))dx12(1ex+x+xex+xlog2(log(x))ex+x)dx+12(xex+x+x2ex+xxlog2(log(x))ex+x)dx+12Subst(log2(x)dx,x,log(x))(log(log(x))log(x)log(exx+x2)log(log(x))xlog(x))dx=12log(x)log2(log(x))121ex+xdx+12x2ex+xdx+121x+x2xdx12log(exx+x2)dx+12log2(log(x))ex+xdx12xlog2(log(x))ex+xdxlog(log(x))log(x)dx+log(exx+x2)log(log(x))xlog(x)dxSubst(log(x)dx,x,log(x))=log(x)12xlog(exx+x2)log(x)log(log(x))+12log(x)log2(log(x))121ex+xdx+12x2ex+xdx+12(11x+x)dx+122x+ex(1+x)ex+xdx+12log2(log(x))ex+xdx12xlog2(log(x))ex+xdxlog(log(x))log(x)dx+log(exx+x2)log(log(x))xlog(x)dx=x2+x24+log(x)212xlog(exx+x2)log(x)log(log(x))+12log(x)log2(log(x))121ex+xdx+12x2ex+xdx+12(1+x(1+x)xex+x)dx+12log2(log(x))ex+xdx12xlog2(log(x))ex+xdxlog(log(x))log(x)dx+log(exx+x2)log(log(x))xlog(x)dx=x22+log(x)212xlog(exx+x2)log(x)log(log(x))+12log(x)log2(log(x))121ex+xdx12(1+x)xex+xdx+12x2ex+xdx+12log2(log(x))ex+xdx12xlog2(log(x))ex+xdxlog(log(x))log(x)dx+log(exx+x2)log(log(x))xlog(x)dx=x22+log(x)212xlog(exx+x2)log(x)log(log(x))+12log(x)log2(log(x))121ex+xdx+12x2ex+xdx12(xex+x+x2ex+x)dx+12log2(log(x))ex+xdx12xlog2(log(x))ex+xdxlog(log(x))log(x)dx+log(exx+x2)log(log(x))xlog(x)dx=x22+log(x)212xlog(exx+x2)log(x)log(log(x))+12log(x)log2(log(x))121ex+xdx+12xex+xdx+12log2(log(x))ex+xdx12xlog2(log(x))ex+xdxlog(log(x))log(x)dx+log(exx+x2)log(log(x))xlog(x)dx

________________________________________________________________________________________

Mathematica [A]  time = 0.25, size = 51, normalized size = 1.96 12(x+x2log(x)log(ex+x)xlog(x(ex+x))(xlog(x(ex+x)))log2(log(x)))

Antiderivative was successfully verified.

[In]

Integrate[((-2*x - x^2 + 2*x^3 + E^x*(-1 - x + x^2))*Log[x] + (-(E^x*x) - x^2)*Log[x]*Log[E^x*x + x^2] + (-2*E
^x*x - 2*x^2 + (2*E^x + 2*x)*Log[E^x*x + x^2])*Log[Log[x]] + (E^x + 2*x - x^2)*Log[x]*Log[Log[x]]^2)/((2*E^x*x
 + 2*x^2)*Log[x]),x]

[Out]

(x + x^2 - Log[x] - Log[E^x + x] - x*Log[x*(E^x + x)] - (x - Log[x*(E^x + x)])*Log[Log[x]]^2)/2

________________________________________________________________________________________

fricas [A]  time = 1.01, size = 43, normalized size = 1.65 12(xlog(x2+xex))log(log(x))2+12x212(x+1)log(x2+xex)+12x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((exp(x)-x^2+2*x)*log(x)*log(log(x))^2+((2*exp(x)+2*x)*log(exp(x)*x+x^2)-2*exp(x)*x-2*x^2)*log(log(x
))+(-exp(x)*x-x^2)*log(x)*log(exp(x)*x+x^2)+((x^2-x-1)*exp(x)+2*x^3-x^2-2*x)*log(x))/(2*exp(x)*x+2*x^2)/log(x)
,x, algorithm="fricas")

[Out]

-1/2*(x - log(x^2 + x*e^x))*log(log(x))^2 + 1/2*x^2 - 1/2*(x + 1)*log(x^2 + x*e^x) + 1/2*x

________________________________________________________________________________________

giac [B]  time = 0.24, size = 62, normalized size = 2.38 12xlog(log(x))2+12log(x+ex)log(log(x))2+12log(x)log(log(x))2+12x212xlog(x+ex)12xlog(x)+12x12log(x+ex)12log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((exp(x)-x^2+2*x)*log(x)*log(log(x))^2+((2*exp(x)+2*x)*log(exp(x)*x+x^2)-2*exp(x)*x-2*x^2)*log(log(x
))+(-exp(x)*x-x^2)*log(x)*log(exp(x)*x+x^2)+((x^2-x-1)*exp(x)+2*x^3-x^2-2*x)*log(x))/(2*exp(x)*x+2*x^2)/log(x)
,x, algorithm="giac")

[Out]

-1/2*x*log(log(x))^2 + 1/2*log(x + e^x)*log(log(x))^2 + 1/2*log(x)*log(log(x))^2 + 1/2*x^2 - 1/2*x*log(x + e^x
) - 1/2*x*log(x) + 1/2*x - 1/2*log(x + e^x) - 1/2*log(x)

________________________________________________________________________________________

maple [C]  time = 0.13, size = 252, normalized size = 9.69




method result size



risch (ln(ln(x))22x2)ln(ex+x)xln(ln(x))22+ln(x)ln(ln(x))22+ixπcsgn(ix)csgn(i(ex+x))csgn(ix(ex+x))4+iln(ln(x))2πcsgn(ix)csgn(ix(ex+x))24+iln(ln(x))2πcsgn(i(ex+x))csgn(ix(ex+x))24iln(ln(x))2πcsgn(ix)csgn(i(ex+x))csgn(ix(ex+x))4xln(x)2+ixπcsgn(ix(ex+x))34ixπcsgn(i(ex+x))csgn(ix(ex+x))24ixπcsgn(ix)csgn(ix(ex+x))24iln(ln(x))2πcsgn(ix(ex+x))34+x22ln(x)2+x2ln(ex+x)2 252



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((exp(x)-x^2+2*x)*ln(x)*ln(ln(x))^2+((2*exp(x)+2*x)*ln(exp(x)*x+x^2)-2*exp(x)*x-2*x^2)*ln(ln(x))+(-exp(x)*
x-x^2)*ln(x)*ln(exp(x)*x+x^2)+((x^2-x-1)*exp(x)+2*x^3-x^2-2*x)*ln(x))/(2*exp(x)*x+2*x^2)/ln(x),x,method=_RETUR
NVERBOSE)

[Out]

(1/2*ln(ln(x))^2-1/2*x)*ln(exp(x)+x)-1/2*x*ln(ln(x))^2+1/2*ln(x)*ln(ln(x))^2+1/4*I*x*Pi*csgn(I*x)*csgn(I*(exp(
x)+x))*csgn(I*x*(exp(x)+x))+1/4*I*ln(ln(x))^2*Pi*csgn(I*x)*csgn(I*x*(exp(x)+x))^2+1/4*I*ln(ln(x))^2*Pi*csgn(I*
(exp(x)+x))*csgn(I*x*(exp(x)+x))^2-1/4*I*ln(ln(x))^2*Pi*csgn(I*x)*csgn(I*(exp(x)+x))*csgn(I*x*(exp(x)+x))-1/2*
x*ln(x)+1/4*I*x*Pi*csgn(I*x*(exp(x)+x))^3-1/4*I*x*Pi*csgn(I*(exp(x)+x))*csgn(I*x*(exp(x)+x))^2-1/4*I*x*Pi*csgn
(I*x)*csgn(I*x*(exp(x)+x))^2-1/4*I*ln(ln(x))^2*Pi*csgn(I*x*(exp(x)+x))^3+1/2*x^2-1/2*ln(x)+1/2*x-1/2*ln(exp(x)
+x)

________________________________________________________________________________________

maxima [A]  time = 0.42, size = 46, normalized size = 1.77 12(xlog(x))log(log(x))2+12x2+12(log(log(x))2x1)log(x+ex)12(x+1)log(x)+12x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((exp(x)-x^2+2*x)*log(x)*log(log(x))^2+((2*exp(x)+2*x)*log(exp(x)*x+x^2)-2*exp(x)*x-2*x^2)*log(log(x
))+(-exp(x)*x-x^2)*log(x)*log(exp(x)*x+x^2)+((x^2-x-1)*exp(x)+2*x^3-x^2-2*x)*log(x))/(2*exp(x)*x+2*x^2)/log(x)
,x, algorithm="maxima")

[Out]

-1/2*(x - log(x))*log(log(x))^2 + 1/2*x^2 + 1/2*(log(log(x))^2 - x - 1)*log(x + e^x) - 1/2*(x + 1)*log(x) + 1/
2*x

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.04 ln(x)(2x+exx2)ln(ln(x))2+(2xexln(xex+x2)(2x+2ex)+2x2)ln(ln(x))+ln(x)(2x+ex(x2+x+1)+x22x3)+ln(xex+x2)ln(x)(xex+x2)ln(x)(2xex+2x2)dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(log(log(x))*(2*x*exp(x) - log(x*exp(x) + x^2)*(2*x + 2*exp(x)) + 2*x^2) + log(x)*(2*x + exp(x)*(x - x^2
+ 1) + x^2 - 2*x^3) - log(log(x))^2*log(x)*(2*x + exp(x) - x^2) + log(x*exp(x) + x^2)*log(x)*(x*exp(x) + x^2))
/(log(x)*(2*x*exp(x) + 2*x^2)),x)

[Out]

int(-(log(log(x))*(2*x*exp(x) - log(x*exp(x) + x^2)*(2*x + 2*exp(x)) + 2*x^2) + log(x)*(2*x + exp(x)*(x - x^2
+ 1) + x^2 - 2*x^3) - log(log(x))^2*log(x)*(2*x + exp(x) - x^2) + log(x*exp(x) + x^2)*log(x)*(x*exp(x) + x^2))
/(log(x)*(2*x*exp(x) + 2*x^2)), x)

________________________________________________________________________________________

sympy [B]  time = 1.74, size = 53, normalized size = 2.04 x22xlog(log(x))22+x2+(x2+log(log(x))22)log(x2+xex)log(x)2log(x+ex)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((exp(x)-x**2+2*x)*ln(x)*ln(ln(x))**2+((2*exp(x)+2*x)*ln(exp(x)*x+x**2)-2*exp(x)*x-2*x**2)*ln(ln(x))
+(-exp(x)*x-x**2)*ln(x)*ln(exp(x)*x+x**2)+((x**2-x-1)*exp(x)+2*x**3-x**2-2*x)*ln(x))/(2*exp(x)*x+2*x**2)/ln(x)
,x)

[Out]

x**2/2 - x*log(log(x))**2/2 + x/2 + (-x/2 + log(log(x))**2/2)*log(x**2 + x*exp(x)) - log(x)/2 - log(x + exp(x)
)/2

________________________________________________________________________________________