Optimal. Leaf size=18 \[ 2\ 3^{6 e^x (2-x)} x \log (\log (x)) \]
________________________________________________________________________________________
Rubi [F] time = 1.18, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2\ 3^{e^x (12-6 x)}+3^{e^x (12-6 x)} \left (2+e^x \left (12 x-12 x^2\right ) \log (3)\right ) \log (x) \log (\log (x))}{\log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3^{-6 e^x (-2+x)} \left (2-2 \left (-1+6 e^x (-1+x) x \log (3)\right ) \log (x) \log (\log (x))\right )}{\log (x)} \, dx\\ &=\int \left (-4 3^{1-6 e^x (-2+x)} e^x (-1+x) x \log (3) \log (\log (x))+\frac {2\ 3^{-6 e^x (-2+x)} (1+\log (x) \log (\log (x)))}{\log (x)}\right ) \, dx\\ &=2 \int \frac {3^{-6 e^x (-2+x)} (1+\log (x) \log (\log (x)))}{\log (x)} \, dx-(4 \log (3)) \int 3^{1-6 e^x (-2+x)} e^x (-1+x) x \log (\log (x)) \, dx\\ &=2 \int \left (\frac {3^{-6 e^x (-2+x)}}{\log (x)}+3^{-6 e^x (-2+x)} \log (\log (x))\right ) \, dx-(4 \log (3)) \int \left (-3^{1-6 e^x (-2+x)} e^x x \log (\log (x))+3^{1-6 e^x (-2+x)} e^x x^2 \log (\log (x))\right ) \, dx\\ &=2 \int \frac {3^{-6 e^x (-2+x)}}{\log (x)} \, dx+2 \int 3^{-6 e^x (-2+x)} \log (\log (x)) \, dx+(4 \log (3)) \int 3^{1-6 e^x (-2+x)} e^x x \log (\log (x)) \, dx-(4 \log (3)) \int 3^{1-6 e^x (-2+x)} e^x x^2 \log (\log (x)) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.35, size = 16, normalized size = 0.89 \begin {gather*} 2\ 3^{-6 e^x (-2+x)} x \log (\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 17, normalized size = 0.94 \begin {gather*} \frac {2 \, x \log \left (\log \relax (x)\right )}{3^{6 \, {\left (x - 2\right )} e^{x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {2 \, {\left (\frac {{\left (6 \, {\left (x^{2} - x\right )} e^{x} \log \relax (3) - 1\right )} \log \relax (x) \log \left (\log \relax (x)\right )}{3^{6 \, {\left (x - 2\right )} e^{x}}} - \frac {1}{3^{6 \, {\left (x - 2\right )} e^{x}}}\right )}}{\log \relax (x)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 15, normalized size = 0.83
method | result | size |
risch | \(2 x \left (\frac {1}{729}\right )^{{\mathrm e}^{x} \left (x -2\right )} \ln \left (\ln \relax (x )\right )\) | \(15\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 21, normalized size = 1.17 \begin {gather*} 2 \, x e^{\left (-6 \, x e^{x} \log \relax (3) + 12 \, e^{x} \log \relax (3)\right )} \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.06 \begin {gather*} \int \frac {2\,{\mathrm {e}}^{-{\mathrm {e}}^x\,\ln \relax (3)\,\left (6\,x-12\right )}+\ln \left (\ln \relax (x)\right )\,{\mathrm {e}}^{-{\mathrm {e}}^x\,\ln \relax (3)\,\left (6\,x-12\right )}\,\ln \relax (x)\,\left ({\mathrm {e}}^x\,\ln \relax (3)\,\left (12\,x-12\,x^2\right )+2\right )}{\ln \relax (x)} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 74.06, size = 20, normalized size = 1.11 \begin {gather*} 2 x e^{\left (12 - 6 x\right ) e^{x} \log {\relax (3 )}} \log {\left (\log {\relax (x )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________