3.41.79
Optimal. Leaf size=28
________________________________________________________________________________________
Rubi [F] time = 3.00, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[((12 - 4*x)*Log[3 - x] + (4*x + (-36*x^3 + 12*x^4)*Log[3 - x])*Log[x] + (E^x^3*(3 - x)*Log[3 - x] + E^x^3*
x*Log[x])*Log[Log[4]])/(E^x^3*(-3*x + x^2)*Log[3 - x]^2),x]
[Out]
(-4*(3*x^3*Log[3 - x]*Log[x] - x^4*Log[3 - x]*Log[x]))/(E^x^3*(3 - x)*x^3*Log[3 - x]^2) - Log[Log[4]]*Defer[In
t][1/(x*Log[3 - x]), x] + Log[Log[4]]*Defer[Subst][Defer[Int][Log[3 - x]/(x*Log[x]^2), x], x, 3 - x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.34, size = 25, normalized size = 0.89
Antiderivative was successfully verified.
[In]
Integrate[((12 - 4*x)*Log[3 - x] + (4*x + (-36*x^3 + 12*x^4)*Log[3 - x])*Log[x] + (E^x^3*(3 - x)*Log[3 - x] +
E^x^3*x*Log[x])*Log[Log[4]])/(E^x^3*(-3*x + x^2)*Log[3 - x]^2),x]
[Out]
-((Log[x]*(4/E^x^3 + Log[Log[4]]))/Log[3 - x])
________________________________________________________________________________________
fricas [A] time = 0.75, size = 33, normalized size = 1.18
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((x*exp(x^3)*log(x)+(3-x)*exp(x^3)*log(3-x))*log(2*log(2))+((12*x^4-36*x^3)*log(3-x)+4*x)*log(x)+(-4
*x+12)*log(3-x))/(x^2-3*x)/exp(x^3)/log(3-x)^2,x, algorithm="fricas")
[Out]
-(e^(x^3)*log(x)*log(2*log(2)) + 4*log(x))*e^(-x^3)/log(-x + 3)
________________________________________________________________________________________
giac [A] time = 0.22, size = 32, normalized size = 1.14
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((x*exp(x^3)*log(x)+(3-x)*exp(x^3)*log(3-x))*log(2*log(2))+((12*x^4-36*x^3)*log(3-x)+4*x)*log(x)+(-4
*x+12)*log(3-x))/(x^2-3*x)/exp(x^3)/log(3-x)^2,x, algorithm="giac")
[Out]
-(4*e^(-x^3)*log(x) + log(2)*log(x) + log(x)*log(log(2)))/log(-x + 3)
________________________________________________________________________________________
maple [A] time = 0.07, size = 36, normalized size = 1.29
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((x*exp(x^3)*ln(x)+(3-x)*exp(x^3)*ln(3-x))*ln(2*ln(2))+((12*x^4-36*x^3)*ln(3-x)+4*x)*ln(x)+(-4*x+12)*ln(3-
x))/(x^2-3*x)/exp(x^3)/ln(3-x)^2,x,method=_RETURNVERBOSE)
[Out]
-ln(x)*(exp(x^3)*ln(2)+exp(x^3)*ln(ln(2))+4)*exp(-x^3)/ln(3-x)
________________________________________________________________________________________
maxima [A] time = 0.52, size = 34, normalized size = 1.21
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((x*exp(x^3)*log(x)+(3-x)*exp(x^3)*log(3-x))*log(2*log(2))+((12*x^4-36*x^3)*log(3-x)+4*x)*log(x)+(-4
*x+12)*log(3-x))/(x^2-3*x)/exp(x^3)/log(3-x)^2,x, algorithm="maxima")
[Out]
-((log(2) + log(log(2)))*e^(x^3)*log(x) + 4*log(x))*e^(-x^3)/log(-x + 3)
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((exp(-x^3)*(log(2*log(2))*(exp(x^3)*log(3 - x)*(x - 3) - x*exp(x^3)*log(x)) + log(3 - x)*(4*x - 12) - log(
x)*(4*x - log(3 - x)*(36*x^3 - 12*x^4))))/(log(3 - x)^2*(3*x - x^2)),x)
[Out]
-int(-(exp(-x^3)*(log(2*log(2))*(exp(x^3)*log(3 - x)*(x - 3) - x*exp(x^3)*log(x)) + log(3 - x)*(4*x - 12) - lo
g(x)*(4*x - log(3 - x)*(36*x^3 - 12*x^4))))/(log(3 - x)^2*(3*x - x^2)), x)
________________________________________________________________________________________
sympy [A] time = 0.43, size = 36, normalized size = 1.29
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((x*exp(x**3)*ln(x)+(3-x)*exp(x**3)*ln(3-x))*ln(2*ln(2))+((12*x**4-36*x**3)*ln(3-x)+4*x)*ln(x)+(-4*x
+12)*ln(3-x))/(x**2-3*x)/exp(x**3)/ln(3-x)**2,x)
[Out]
(-log(2)*log(x) - log(x)*log(log(2)))/log(3 - x) - 4*exp(-x**3)*log(x)/log(3 - x)
________________________________________________________________________________________