3.41.79 ex3((124x)log(3x)+(4x+(36x3+12x4)log(3x))log(x)+(ex3(3x)log(3x)+ex3xlog(x))log(log(4)))(3x+x2)log2(3x)dx

Optimal. Leaf size=28 4+log(x)(4ex3log(log(4)))log(3x)

________________________________________________________________________________________

Rubi [F]  time = 3.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} ex3((124x)log(3x)+(4x+(36x3+12x4)log(3x))log(x)+(ex3(3x)log(3x)+ex3xlog(x))log(log(4)))(3x+x2)log2(3x)dx

Verification is not applicable to the result.

[In]

Int[((12 - 4*x)*Log[3 - x] + (4*x + (-36*x^3 + 12*x^4)*Log[3 - x])*Log[x] + (E^x^3*(3 - x)*Log[3 - x] + E^x^3*
x*Log[x])*Log[Log[4]])/(E^x^3*(-3*x + x^2)*Log[3 - x]^2),x]

[Out]

(-4*(3*x^3*Log[3 - x]*Log[x] - x^4*Log[3 - x]*Log[x]))/(E^x^3*(3 - x)*x^3*Log[3 - x]^2) - Log[Log[4]]*Defer[In
t][1/(x*Log[3 - x]), x] + Log[Log[4]]*Defer[Subst][Defer[Int][Log[3 - x]/(x*Log[x]^2), x], x, 3 - x]

Rubi steps

integral=ex3((124x)log(3x)+(4x+(36x3+12x4)log(3x))log(x)+(ex3(3x)log(3x)+ex3xlog(x))log(log(4)))(3+x)xlog2(3x)dx=ex3(((3+x)log(3x)(4+12x3log(x)ex3log(log(4))))xlog(x)(4+ex3log(log(4))))(3x)xlog2(3x)dx=(4ex3(3log(3x)xlog(3x)+xlog(x)9x3log(3x)log(x)+3x4log(3x)log(x))(3+x)xlog2(3x)(3log(3x)+xlog(3x)xlog(x))log(log(4))(3+x)xlog2(3x))dx=4ex3(3log(3x)xlog(3x)+xlog(x)9x3log(3x)log(x)+3x4log(3x)log(x))(3+x)xlog2(3x)dxlog(log(4))3log(3x)+xlog(3x)xlog(x)(3+x)xlog2(3x)dx=4ex3(3x3log(3x)log(x)x4log(3x)log(x))(3x)x3log2(3x)log(log(4))log(3x)xlog(x)3+xlog2(3x)dx=4ex3(3x3log(3x)log(x)x4log(3x)log(x))(3x)x3log2(3x)log(log(4))(1xlog(3x)log(x)(3+x)log2(3x))dx=4ex3(3x3log(3x)log(x)x4log(3x)log(x))(3x)x3log2(3x)log(log(4))1xlog(3x)dx+log(log(4))log(x)(3+x)log2(3x)dx=4ex3(3x3log(3x)log(x)x4log(3x)log(x))(3x)x3log2(3x)log(log(4))1xlog(3x)dx+log(log(4))Subst(log(3x)xlog2(x)dx,x,3x)

________________________________________________________________________________________

Mathematica [A]  time = 0.34, size = 25, normalized size = 0.89 log(x)(4ex3+log(log(4)))log(3x)

Antiderivative was successfully verified.

[In]

Integrate[((12 - 4*x)*Log[3 - x] + (4*x + (-36*x^3 + 12*x^4)*Log[3 - x])*Log[x] + (E^x^3*(3 - x)*Log[3 - x] +
E^x^3*x*Log[x])*Log[Log[4]])/(E^x^3*(-3*x + x^2)*Log[3 - x]^2),x]

[Out]

-((Log[x]*(4/E^x^3 + Log[Log[4]]))/Log[3 - x])

________________________________________________________________________________________

fricas [A]  time = 0.75, size = 33, normalized size = 1.18 (e(x3)log(x)log(2log(2))+4log(x))e(x3)log(x+3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((x*exp(x^3)*log(x)+(3-x)*exp(x^3)*log(3-x))*log(2*log(2))+((12*x^4-36*x^3)*log(3-x)+4*x)*log(x)+(-4
*x+12)*log(3-x))/(x^2-3*x)/exp(x^3)/log(3-x)^2,x, algorithm="fricas")

[Out]

-(e^(x^3)*log(x)*log(2*log(2)) + 4*log(x))*e^(-x^3)/log(-x + 3)

________________________________________________________________________________________

giac [A]  time = 0.22, size = 32, normalized size = 1.14 4e(x3)log(x)+log(2)log(x)+log(x)log(log(2))log(x+3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((x*exp(x^3)*log(x)+(3-x)*exp(x^3)*log(3-x))*log(2*log(2))+((12*x^4-36*x^3)*log(3-x)+4*x)*log(x)+(-4
*x+12)*log(3-x))/(x^2-3*x)/exp(x^3)/log(3-x)^2,x, algorithm="giac")

[Out]

-(4*e^(-x^3)*log(x) + log(2)*log(x) + log(x)*log(log(2)))/log(-x + 3)

________________________________________________________________________________________

maple [A]  time = 0.07, size = 36, normalized size = 1.29




method result size



risch ln(x)(ex3ln(2)+ex3ln(ln(2))+4)ex3ln(3x) 36



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((x*exp(x^3)*ln(x)+(3-x)*exp(x^3)*ln(3-x))*ln(2*ln(2))+((12*x^4-36*x^3)*ln(3-x)+4*x)*ln(x)+(-4*x+12)*ln(3-
x))/(x^2-3*x)/exp(x^3)/ln(3-x)^2,x,method=_RETURNVERBOSE)

[Out]

-ln(x)*(exp(x^3)*ln(2)+exp(x^3)*ln(ln(2))+4)*exp(-x^3)/ln(3-x)

________________________________________________________________________________________

maxima [A]  time = 0.52, size = 34, normalized size = 1.21 ((log(2)+log(log(2)))e(x3)log(x)+4log(x))e(x3)log(x+3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((x*exp(x^3)*log(x)+(3-x)*exp(x^3)*log(3-x))*log(2*log(2))+((12*x^4-36*x^3)*log(3-x)+4*x)*log(x)+(-4
*x+12)*log(3-x))/(x^2-3*x)/exp(x^3)/log(3-x)^2,x, algorithm="maxima")

[Out]

-((log(2) + log(log(2)))*e^(x^3)*log(x) + 4*log(x))*e^(-x^3)/log(-x + 3)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.04 ex3(ln(2ln(2))(ex3ln(3x)(x3)xex3ln(x))+ln(3x)(4x12)ln(x)(4xln(3x)(36x312x4)))ln(3x)2(3xx2)dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(-x^3)*(log(2*log(2))*(exp(x^3)*log(3 - x)*(x - 3) - x*exp(x^3)*log(x)) + log(3 - x)*(4*x - 12) - log(
x)*(4*x - log(3 - x)*(36*x^3 - 12*x^4))))/(log(3 - x)^2*(3*x - x^2)),x)

[Out]

-int(-(exp(-x^3)*(log(2*log(2))*(exp(x^3)*log(3 - x)*(x - 3) - x*exp(x^3)*log(x)) + log(3 - x)*(4*x - 12) - lo
g(x)*(4*x - log(3 - x)*(36*x^3 - 12*x^4))))/(log(3 - x)^2*(3*x - x^2)), x)

________________________________________________________________________________________

sympy [A]  time = 0.43, size = 36, normalized size = 1.29 log(2)log(x)log(x)log(log(2))log(3x)4ex3log(x)log(3x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((x*exp(x**3)*ln(x)+(3-x)*exp(x**3)*ln(3-x))*ln(2*ln(2))+((12*x**4-36*x**3)*ln(3-x)+4*x)*ln(x)+(-4*x
+12)*ln(3-x))/(x**2-3*x)/exp(x**3)/ln(3-x)**2,x)

[Out]

(-log(2)*log(x) - log(x)*log(log(2)))/log(3 - x) - 4*exp(-x**3)*log(x)/log(3 - x)

________________________________________________________________________________________