3.41.81
Optimal. Leaf size=34
________________________________________________________________________________________
Rubi [F] time = 12.65, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(-50*x^4 - 20*x^3*Log[Log[4]] - 2*x^2*Log[Log[4]]^2 + E^((-E^5 + x - 10*x^3 - 2*x^2*Log[Log[4]])/(10*x^2 +
2*x*Log[Log[4]]))*(10*E^5*x - 5*x^2 - 50*x^4 + (E^5 - 20*x^3)*Log[Log[4]] - 2*x^2*Log[Log[4]]^2))/(50*x^4 + 2
0*x^3*Log[Log[4]] + 2*x^2*Log[Log[4]]^2),x]
[Out]
-x - Defer[Int][E^((-E^5 + x - 10*x^3)/(2*x*(5*x + Log[Log[4]])))/Log[4]^(x/(5*x + Log[Log[4]])), x] + Defer[I
nt][E^(5 + (-E^5 + x - 10*x^3)/(2*x*(5*x + Log[Log[4]])))/(x^2*Log[4]^(x/(5*x + Log[Log[4]]))), x]/(2*Log[Log[
4]]) - (5*(1 + (5*E^5)/Log[Log[4]])*Defer[Int][E^((-E^5 + x - 10*x^3)/(2*x*(5*x + Log[Log[4]])))/(Log[4]^(x/(5
*x + Log[Log[4]]))*(5*x + Log[Log[4]])^2), x])/2
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 47, normalized size = 1.38
Antiderivative was successfully verified.
[In]
Integrate[(-50*x^4 - 20*x^3*Log[Log[4]] - 2*x^2*Log[Log[4]]^2 + E^((-E^5 + x - 10*x^3 - 2*x^2*Log[Log[4]])/(10
*x^2 + 2*x*Log[Log[4]]))*(10*E^5*x - 5*x^2 - 50*x^4 + (E^5 - 20*x^3)*Log[Log[4]] - 2*x^2*Log[Log[4]]^2))/(50*x
^4 + 20*x^3*Log[Log[4]] + 2*x^2*Log[Log[4]]^2),x]
[Out]
(2/E^((E^5 + x*(-1 + 10*x^2 + 2*x*Log[Log[4]]))/(2*x*(5*x + Log[Log[4]]))) - 2*x)/2
________________________________________________________________________________________
fricas [A] time = 0.66, size = 43, normalized size = 1.26
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-2*x^2*log(2*log(2))^2+(exp(5)-20*x^3)*log(2*log(2))+10*x*exp(5)-50*x^4-5*x^2)*exp((-2*x^2*log(2*l
og(2))-exp(5)-10*x^3+x)/(2*x*log(2*log(2))+10*x^2))-2*x^2*log(2*log(2))^2-20*x^3*log(2*log(2))-50*x^4)/(2*x^2*
log(2*log(2))^2+20*x^3*log(2*log(2))+50*x^4),x, algorithm="fricas")
[Out]
-x + e^(-1/2*(10*x^3 + 2*x^2*log(2*log(2)) - x + e^5)/(5*x^2 + x*log(2*log(2))))
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-2*x^2*log(2*log(2))^2+(exp(5)-20*x^3)*log(2*log(2))+10*x*exp(5)-50*x^4-5*x^2)*exp((-2*x^2*log(2*l
og(2))-exp(5)-10*x^3+x)/(2*x*log(2*log(2))+10*x^2))-2*x^2*log(2*log(2))^2-20*x^3*log(2*log(2))-50*x^4)/(2*x^2*
log(2*log(2))^2+20*x^3*log(2*log(2))+50*x^4),x, algorithm="giac")
[Out]
undef
________________________________________________________________________________________
maple [A] time = 0.33, size = 48, normalized size = 1.41
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
norman |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((-2*x^2*ln(2*ln(2))^2+(exp(5)-20*x^3)*ln(2*ln(2))+10*x*exp(5)-50*x^4-5*x^2)*exp((-2*x^2*ln(2*ln(2))-exp(5
)-10*x^3+x)/(2*x*ln(2*ln(2))+10*x^2))-2*x^2*ln(2*ln(2))^2-20*x^3*ln(2*ln(2))-50*x^4)/(2*x^2*ln(2*ln(2))^2+20*x
^3*ln(2*ln(2))+50*x^4),x,method=_RETURNVERBOSE)
[Out]
-x+exp(-1/2*(2*x^2*ln(2)+2*x^2*ln(ln(2))+10*x^3+exp(5)-x)/x/(ln(2)+ln(ln(2))+5*x))
________________________________________________________________________________________
maxima [B] time = 0.71, size = 141, normalized size = 4.15
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-2*x^2*log(2*log(2))^2+(exp(5)-20*x^3)*log(2*log(2))+10*x*exp(5)-50*x^4-5*x^2)*exp((-2*x^2*log(2*l
og(2))-exp(5)-10*x^3+x)/(2*x*log(2*log(2))+10*x^2))-2*x^2*log(2*log(2))^2-20*x^3*log(2*log(2))-50*x^4)/(2*x^2*
log(2*log(2))^2+20*x^3*log(2*log(2))+50*x^4),x, algorithm="maxima")
[Out]
-2/5*(log(2*log(2))/(5*x + log(2*log(2))) + log(5*x + log(2*log(2))))*log(2*log(2)) + 2/5*log(5*x + log(2*log(
2)))*log(2*log(2)) - x + 2/5*log(2*log(2))^2/(5*x + log(2*log(2))) + e^(-x + 5/2*e^5/(5*x*(log(2) + log(log(2)
)) + log(2)^2 + 2*log(2)*log(log(2)) + log(log(2))^2) + 1/2/(5*x + log(2) + log(log(2))) - 1/2*e^5/(x*(log(2)
+ log(log(2)))))
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(20*x^3*log(2*log(2)) + 2*x^2*log(2*log(2))^2 + 50*x^4 + exp(-(exp(5) - x + 2*x^2*log(2*log(2)) + 10*x^3)
/(2*x*log(2*log(2)) + 10*x^2))*(2*x^2*log(2*log(2))^2 - log(2*log(2))*(exp(5) - 20*x^3) - 10*x*exp(5) + 5*x^2
+ 50*x^4))/(20*x^3*log(2*log(2)) + 2*x^2*log(2*log(2))^2 + 50*x^4),x)
[Out]
int(-(20*x^3*log(2*log(2)) + 2*x^2*log(2*log(2))^2 + 50*x^4 + exp(-(exp(5) - x + 2*x^2*log(2*log(2)) + 10*x^3)
/(2*x*log(2*log(2)) + 10*x^2))*(2*x^2*log(2*log(2))^2 - log(2*log(2))*(exp(5) - 20*x^3) - 10*x*exp(5) + 5*x^2
+ 50*x^4))/(20*x^3*log(2*log(2)) + 2*x^2*log(2*log(2))^2 + 50*x^4), x)
________________________________________________________________________________________
sympy [A] time = 1.61, size = 39, normalized size = 1.15
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-2*x**2*ln(2*ln(2))**2+(exp(5)-20*x**3)*ln(2*ln(2))+10*x*exp(5)-50*x**4-5*x**2)*exp((-2*x**2*ln(2*
ln(2))-exp(5)-10*x**3+x)/(2*x*ln(2*ln(2))+10*x**2))-2*x**2*ln(2*ln(2))**2-20*x**3*ln(2*ln(2))-50*x**4)/(2*x**2
*ln(2*ln(2))**2+20*x**3*ln(2*ln(2))+50*x**4),x)
[Out]
-x + exp((-10*x**3 - 2*x**2*log(2*log(2)) + x - exp(5))/(10*x**2 + 2*x*log(2*log(2))))
________________________________________________________________________________________