3.41.81 50x420x3log(log(4))2x2log2(log(4))+ee5+x10x32x2log(log(4))10x2+2xlog(log(4))(10e5x5x250x4+(e520x3)log(log(4))2x2log2(log(4)))50x4+20x3log(log(4))+2x2log2(log(4))dx

Optimal. Leaf size=34 1+ex+e5+x2x(5x+log(log(4)))x

________________________________________________________________________________________

Rubi [F]  time = 12.65, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 50x420x3log(log(4))2x2log2(log(4))+exp(e5+x10x32x2log(log(4))10x2+2xlog(log(4)))(10e5x5x250x4+(e520x3)log(log(4))2x2log2(log(4)))50x4+20x3log(log(4))+2x2log2(log(4))dx

Verification is not applicable to the result.

[In]

Int[(-50*x^4 - 20*x^3*Log[Log[4]] - 2*x^2*Log[Log[4]]^2 + E^((-E^5 + x - 10*x^3 - 2*x^2*Log[Log[4]])/(10*x^2 +
 2*x*Log[Log[4]]))*(10*E^5*x - 5*x^2 - 50*x^4 + (E^5 - 20*x^3)*Log[Log[4]] - 2*x^2*Log[Log[4]]^2))/(50*x^4 + 2
0*x^3*Log[Log[4]] + 2*x^2*Log[Log[4]]^2),x]

[Out]

-x - Defer[Int][E^((-E^5 + x - 10*x^3)/(2*x*(5*x + Log[Log[4]])))/Log[4]^(x/(5*x + Log[Log[4]])), x] + Defer[I
nt][E^(5 + (-E^5 + x - 10*x^3)/(2*x*(5*x + Log[Log[4]])))/(x^2*Log[4]^(x/(5*x + Log[Log[4]]))), x]/(2*Log[Log[
4]]) - (5*(1 + (5*E^5)/Log[Log[4]])*Defer[Int][E^((-E^5 + x - 10*x^3)/(2*x*(5*x + Log[Log[4]])))/(Log[4]^(x/(5
*x + Log[Log[4]]))*(5*x + Log[Log[4]])^2), x])/2

Rubi steps

integral=50x420x3log(log(4))2x2log2(log(4))+exp(e5+x10x32x2log(log(4))10x2+2xlog(log(4)))(10e5x5x250x4+(e520x3)log(log(4))2x2log2(log(4)))x2(50x2+20xlog(log(4))+2log2(log(4)))dx=50x420x3log(log(4))2x2log2(log(4))+exp(e5+x10x32x2log(log(4))10x2+2xlog(log(4)))(10e5x5x250x4+(e520x3)log(log(4))2x2log2(log(4)))2x2(5x+log(log(4)))2dx=1250x420x3log(log(4))2x2log2(log(4))+exp(e5+x10x32x2log(log(4))10x2+2xlog(log(4)))(10e5x5x250x4+(e520x3)log(log(4))2x2log2(log(4)))x2(5x+log(log(4)))2dx=12(2+ee5+x10x32x(5x+log(log(4)))logx5x+log(log(4))(4)(10e5x50x4+e5log(log(4))20x3log(log(4))x2(5+2log2(log(4))))x2(5x+log(log(4)))2)dx=x+12ee5+x10x32x(5x+log(log(4)))logx5x+log(log(4))(4)(10e5x50x4+e5log(log(4))20x3log(log(4))x2(5+2log2(log(4))))x2(5x+log(log(4)))2dx=x+12(2ee5+x10x32x(5x+log(log(4)))logx5x+log(log(4))(4)+exp(5+e5+x10x32x(5x+log(log(4))))logx5x+log(log(4))(4)x2log(log(4))5ee5+x10x32x(5x+log(log(4)))logx5x+log(log(4))(4)(5e5+log(log(4)))log(log(4))(5x+log(log(4)))2)dx=x12(5(1+5e5log(log(4))))ee5+x10x32x(5x+log(log(4)))logx5x+log(log(4))(4)(5x+log(log(4)))2dx+exp(5+e5+x10x32x(5x+log(log(4))))logx5x+log(log(4))(4)x2dx2log(log(4))ee5+x10x32x(5x+log(log(4)))logx5x+log(log(4))(4)dx

________________________________________________________________________________________

Mathematica [A]  time = 0.22, size = 47, normalized size = 1.38 12(2ee5+x(1+10x2+2xlog(log(4)))2x(5x+log(log(4)))2x)

Antiderivative was successfully verified.

[In]

Integrate[(-50*x^4 - 20*x^3*Log[Log[4]] - 2*x^2*Log[Log[4]]^2 + E^((-E^5 + x - 10*x^3 - 2*x^2*Log[Log[4]])/(10
*x^2 + 2*x*Log[Log[4]]))*(10*E^5*x - 5*x^2 - 50*x^4 + (E^5 - 20*x^3)*Log[Log[4]] - 2*x^2*Log[Log[4]]^2))/(50*x
^4 + 20*x^3*Log[Log[4]] + 2*x^2*Log[Log[4]]^2),x]

[Out]

(2/E^((E^5 + x*(-1 + 10*x^2 + 2*x*Log[Log[4]]))/(2*x*(5*x + Log[Log[4]]))) - 2*x)/2

________________________________________________________________________________________

fricas [A]  time = 0.66, size = 43, normalized size = 1.26 x+e(10x3+2x2log(2log(2))x+e52(5x2+xlog(2log(2))))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*x^2*log(2*log(2))^2+(exp(5)-20*x^3)*log(2*log(2))+10*x*exp(5)-50*x^4-5*x^2)*exp((-2*x^2*log(2*l
og(2))-exp(5)-10*x^3+x)/(2*x*log(2*log(2))+10*x^2))-2*x^2*log(2*log(2))^2-20*x^3*log(2*log(2))-50*x^4)/(2*x^2*
log(2*log(2))^2+20*x^3*log(2*log(2))+50*x^4),x, algorithm="fricas")

[Out]

-x + e^(-1/2*(10*x^3 + 2*x^2*log(2*log(2)) - x + e^5)/(5*x^2 + x*log(2*log(2))))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 undef

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*x^2*log(2*log(2))^2+(exp(5)-20*x^3)*log(2*log(2))+10*x*exp(5)-50*x^4-5*x^2)*exp((-2*x^2*log(2*l
og(2))-exp(5)-10*x^3+x)/(2*x*log(2*log(2))+10*x^2))-2*x^2*log(2*log(2))^2-20*x^3*log(2*log(2))-50*x^4)/(2*x^2*
log(2*log(2))^2+20*x^3*log(2*log(2))+50*x^4),x, algorithm="giac")

[Out]

undef

________________________________________________________________________________________

maple [A]  time = 0.33, size = 48, normalized size = 1.41




method result size



risch x+e2x2ln(2)+2x2ln(ln(2))+10x3+e5x2x(ln(2)+ln(ln(2))+5x) 48
norman (ln(2)25+2ln(2)ln(ln(2))5+ln(ln(2))25)x+(ln(2)+ln(ln(2)))xe2x2ln(2ln(2))e510x3+x2xln(2ln(2))+10x25x3+5x2e2x2ln(2ln(2))e510x3+x2xln(2ln(2))+10x2x(ln(2ln(2))+5x) 136



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-2*x^2*ln(2*ln(2))^2+(exp(5)-20*x^3)*ln(2*ln(2))+10*x*exp(5)-50*x^4-5*x^2)*exp((-2*x^2*ln(2*ln(2))-exp(5
)-10*x^3+x)/(2*x*ln(2*ln(2))+10*x^2))-2*x^2*ln(2*ln(2))^2-20*x^3*ln(2*ln(2))-50*x^4)/(2*x^2*ln(2*ln(2))^2+20*x
^3*ln(2*ln(2))+50*x^4),x,method=_RETURNVERBOSE)

[Out]

-x+exp(-1/2*(2*x^2*ln(2)+2*x^2*ln(ln(2))+10*x^3+exp(5)-x)/x/(ln(2)+ln(ln(2))+5*x))

________________________________________________________________________________________

maxima [B]  time = 0.71, size = 141, normalized size = 4.15 25(log(2log(2))5x+log(2log(2))+log(5x+log(2log(2))))log(2log(2))+25log(5x+log(2log(2)))log(2log(2))x+2log(2log(2))25(5x+log(2log(2)))+e(x+5e52(5x(log(2)+log(log(2)))+log(2)2+2log(2)log(log(2))+log(log(2))2)+12(5x+log(2)+log(log(2)))e52x(log(2)+log(log(2))))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*x^2*log(2*log(2))^2+(exp(5)-20*x^3)*log(2*log(2))+10*x*exp(5)-50*x^4-5*x^2)*exp((-2*x^2*log(2*l
og(2))-exp(5)-10*x^3+x)/(2*x*log(2*log(2))+10*x^2))-2*x^2*log(2*log(2))^2-20*x^3*log(2*log(2))-50*x^4)/(2*x^2*
log(2*log(2))^2+20*x^3*log(2*log(2))+50*x^4),x, algorithm="maxima")

[Out]

-2/5*(log(2*log(2))/(5*x + log(2*log(2))) + log(5*x + log(2*log(2))))*log(2*log(2)) + 2/5*log(5*x + log(2*log(
2)))*log(2*log(2)) - x + 2/5*log(2*log(2))^2/(5*x + log(2*log(2))) + e^(-x + 5/2*e^5/(5*x*(log(2) + log(log(2)
)) + log(2)^2 + 2*log(2)*log(log(2)) + log(log(2))^2) + 1/2/(5*x + log(2) + log(log(2))) - 1/2*e^5/(x*(log(2)
+ log(log(2)))))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 20x3ln(2ln(2))+2x2ln(2ln(2))2+50x4+e10x3+2ln(2ln(2))x2x+e510x2+2ln(2ln(2))x(2x2ln(2ln(2))2ln(2ln(2))(e520x3)10xe5+5x2+50x4)50x4+20ln(2ln(2))x3+2ln(2ln(2))2x2dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(20*x^3*log(2*log(2)) + 2*x^2*log(2*log(2))^2 + 50*x^4 + exp(-(exp(5) - x + 2*x^2*log(2*log(2)) + 10*x^3)
/(2*x*log(2*log(2)) + 10*x^2))*(2*x^2*log(2*log(2))^2 - log(2*log(2))*(exp(5) - 20*x^3) - 10*x*exp(5) + 5*x^2
+ 50*x^4))/(20*x^3*log(2*log(2)) + 2*x^2*log(2*log(2))^2 + 50*x^4),x)

[Out]

int(-(20*x^3*log(2*log(2)) + 2*x^2*log(2*log(2))^2 + 50*x^4 + exp(-(exp(5) - x + 2*x^2*log(2*log(2)) + 10*x^3)
/(2*x*log(2*log(2)) + 10*x^2))*(2*x^2*log(2*log(2))^2 - log(2*log(2))*(exp(5) - 20*x^3) - 10*x*exp(5) + 5*x^2
+ 50*x^4))/(20*x^3*log(2*log(2)) + 2*x^2*log(2*log(2))^2 + 50*x^4), x)

________________________________________________________________________________________

sympy [A]  time = 1.61, size = 39, normalized size = 1.15 x+e10x32x2log(2log(2))+xe510x2+2xlog(2log(2))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*x**2*ln(2*ln(2))**2+(exp(5)-20*x**3)*ln(2*ln(2))+10*x*exp(5)-50*x**4-5*x**2)*exp((-2*x**2*ln(2*
ln(2))-exp(5)-10*x**3+x)/(2*x*ln(2*ln(2))+10*x**2))-2*x**2*ln(2*ln(2))**2-20*x**3*ln(2*ln(2))-50*x**4)/(2*x**2
*ln(2*ln(2))**2+20*x**3*ln(2*ln(2))+50*x**4),x)

[Out]

-x + exp((-10*x**3 - 2*x**2*log(2*log(2)) + x - exp(5))/(10*x**2 + 2*x*log(2*log(2))))

________________________________________________________________________________________