3.41.80 1log(175(12x+4xlog(2)))2log2(175(12x+4xlog(2)))log2(175(12x+4xlog(2)))dx

Optimal. Leaf size=20 22xxlog(475x(3+log(2)))

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 19, normalized size of antiderivative = 0.95, number of steps used = 6, number of rules used = 4, integrand size = 53, number of rulesintegrand size = 0.075, Rules used = {2444, 6688, 2297, 2298} 2xxlog(475x(3+log(2)))

Antiderivative was successfully verified.

[In]

Int[(1 - Log[(12*x + 4*x*Log[2])/75] - 2*Log[(12*x + 4*x*Log[2])/75]^2)/Log[(12*x + 4*x*Log[2])/75]^2,x]

[Out]

-2*x - x/Log[(4*x*(3 + Log[2]))/75]

Rule 2297

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_), x_Symbol] :> Simp[(x*(a + b*Log[c*x^n])^(p + 1))/(b*n*(p + 1))
, x] - Dist[1/(b*n*(p + 1)), Int[(a + b*Log[c*x^n])^(p + 1), x], x] /; FreeQ[{a, b, c, n}, x] && LtQ[p, -1] &&
 IntegerQ[2*p]

Rule 2298

Int[Log[(c_.)*(x_)]^(-1), x_Symbol] :> Simp[LogIntegral[c*x]/c, x] /; FreeQ[c, x]

Rule 2444

Int[((a_.) + Log[(c_.)*(v_)^(n_.)]*(b_.))^(p_.)*(u_.), x_Symbol] :> Int[u*(a + b*Log[c*ExpandToSum[v, x]^n])^p
, x] /; FreeQ[{a, b, c, n, p}, x] && LinearQ[v, x] &&  !LinearMatchQ[v, x] &&  !(EqQ[n, 1] && MatchQ[c*v, (e_.
)*((f_) + (g_.)*x) /; FreeQ[{e, f, g}, x]])

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rubi steps

integral=1log(175(12x+4xlog(2)))2log2(175(12x+4xlog(2)))log2(475x(3+log(2)))dx=(2+1log2(475x(3+log(2)))1log(475x(3+log(2))))dx=2x+1log2(475x(3+log(2)))dx1log(475x(3+log(2)))dx=2xxlog(475x(3+log(2)))75li(475x(3+log(2)))4(3+log(2))+1log(475x(3+log(2)))dx=2xxlog(475x(3+log(2)))

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 19, normalized size = 0.95 2xxlog(475x(3+log(2)))

Antiderivative was successfully verified.

[In]

Integrate[(1 - Log[(12*x + 4*x*Log[2])/75] - 2*Log[(12*x + 4*x*Log[2])/75]^2)/Log[(12*x + 4*x*Log[2])/75]^2,x]

[Out]

-2*x - x/Log[(4*x*(3 + Log[2]))/75]

________________________________________________________________________________________

fricas [A]  time = 0.58, size = 29, normalized size = 1.45 2xlog(475xlog(2)+425x)+xlog(475xlog(2)+425x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*log(4/75*x*log(2)+4/25*x)^2-log(4/75*x*log(2)+4/25*x)+1)/log(4/75*x*log(2)+4/25*x)^2,x, algorith
m="fricas")

[Out]

-(2*x*log(4/75*x*log(2) + 4/25*x) + x)/log(4/75*x*log(2) + 4/25*x)

________________________________________________________________________________________

giac [B]  time = 0.16, size = 87, normalized size = 4.35 2(xlog(2)+3x)log(475xlog(2)+425x)log(2)log(475xlog(2)+425x)+3log(475xlog(2)+425x)xlog(2)+3xlog(2)log(475xlog(2)+425x)+3log(475xlog(2)+425x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*log(4/75*x*log(2)+4/25*x)^2-log(4/75*x*log(2)+4/25*x)+1)/log(4/75*x*log(2)+4/25*x)^2,x, algorith
m="giac")

[Out]

-2*(x*log(2) + 3*x)*log(4/75*x*log(2) + 4/25*x)/(log(2)*log(4/75*x*log(2) + 4/25*x) + 3*log(4/75*x*log(2) + 4/
25*x)) - (x*log(2) + 3*x)/(log(2)*log(4/75*x*log(2) + 4/25*x) + 3*log(4/75*x*log(2) + 4/25*x))

________________________________________________________________________________________

maple [A]  time = 0.04, size = 20, normalized size = 1.00




method result size



risch 2xxln(4xln(2)75+4x25) 20
norman x2xln(4xln(2)75+4x25)ln(4xln(2)75+4x25) 31
derivativedivides 75(4ln(2)75+425)x275(4ln(2)75+425)x4ln((4ln(2)75+425)x)3+ln(2) 39
default 75(4ln(2)75+425)x275(4ln(2)75+425)x4ln((4ln(2)75+425)x)3+ln(2) 39



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-2*ln(4/75*x*ln(2)+4/25*x)^2-ln(4/75*x*ln(2)+4/25*x)+1)/ln(4/75*x*ln(2)+4/25*x)^2,x,method=_RETURNVERBOSE
)

[Out]

-2*x-x/ln(4/75*x*ln(2)+4/25*x)

________________________________________________________________________________________

maxima [C]  time = 0.39, size = 46, normalized size = 2.30 8xlog(2)+24x+75Ei(log(475xlog(2)+425x))75Γ(1,log(475xlog(2)+425x))4(log(2)+3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*log(4/75*x*log(2)+4/25*x)^2-log(4/75*x*log(2)+4/25*x)+1)/log(4/75*x*log(2)+4/25*x)^2,x, algorith
m="maxima")

[Out]

-1/4*(8*x*log(2) + 24*x + 75*Ei(log(4/75*x*log(2) + 4/25*x)) - 75*gamma(-1, -log(4/75*x*log(2) + 4/25*x)))/(lo
g(2) + 3)

________________________________________________________________________________________

mupad [B]  time = 3.06, size = 19, normalized size = 0.95 2xxln(4x25+4xln(2)75)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(log((4*x)/25 + (4*x*log(2))/75) + 2*log((4*x)/25 + (4*x*log(2))/75)^2 - 1)/log((4*x)/25 + (4*x*log(2))/7
5)^2,x)

[Out]

- 2*x - x/log((4*x)/25 + (4*x*log(2))/75)

________________________________________________________________________________________

sympy [A]  time = 0.09, size = 20, normalized size = 1.00 2xxlog(4xlog(2)75+4x25)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*ln(4/75*x*ln(2)+4/25*x)**2-ln(4/75*x*ln(2)+4/25*x)+1)/ln(4/75*x*ln(2)+4/25*x)**2,x)

[Out]

-2*x - x/log(4*x*log(2)/75 + 4*x/25)

________________________________________________________________________________________