3.41.83 18123x2+160x360x4+e2/x(128x+6x22x3)15x2dx

Optimal. Leaf size=33 13(2+(2+x)2)(4x3+e2/xx5x)

________________________________________________________________________________________

Rubi [A]  time = 0.18, antiderivative size = 64, normalized size of antiderivative = 1.94, number of steps used = 14, number of rules used = 7, integrand size = 47, number of rulesintegrand size = 0.149, Rules used = {12, 14, 6742, 2206, 2210, 2209, 2214} 4x33115e2/xx2+16x23+415e2/xx41x52e2/x565x

Antiderivative was successfully verified.

[In]

Int[(18 - 123*x^2 + 160*x^3 - 60*x^4 + E^(2/x)*(12 - 8*x + 6*x^2 - 2*x^3))/(15*x^2),x]

[Out]

(-2*E^(2/x))/5 - 6/(5*x) - (41*x)/5 + (4*E^(2/x)*x)/15 + (16*x^2)/3 - (E^(2/x)*x^2)/15 - (4*x^3)/3

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2206

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_)), x_Symbol] :> Simp[((c + d*x)*F^(a + b*(c + d*x)^n))/d, x]
- Dist[b*n*Log[F], Int[(c + d*x)^n*F^(a + b*(c + d*x)^n), x], x] /; FreeQ[{F, a, b, c, d}, x] && IntegerQ[2/n]
 && ILtQ[n, 0]

Rule 2209

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[((e + f*x)^n*
F^(a + b*(c + d*x)^n))/(b*f*n*(c + d*x)^n*Log[F]), x] /; FreeQ[{F, a, b, c, d, e, f, n}, x] && EqQ[m, n - 1] &
& EqQ[d*e - c*f, 0]

Rule 2210

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> Simp[(F^a*ExpIntegralEi[
b*(c + d*x)^n*Log[F]])/(f*n), x] /; FreeQ[{F, a, b, c, d, e, f, n}, x] && EqQ[d*e - c*f, 0]

Rule 2214

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^(m
 + 1)*F^(a + b*(c + d*x)^n))/(d*(m + 1)), x] - Dist[(b*n*Log[F])/(m + 1), Int[(c + d*x)^(m + n)*F^(a + b*(c +
d*x)^n), x], x] /; FreeQ[{F, a, b, c, d}, x] && IntegerQ[(2*(m + 1))/n] && LtQ[-4, (m + 1)/n, 5] && IntegerQ[n
] && ((GtQ[n, 0] && LtQ[m, -1]) || (GtQ[-n, 0] && LeQ[-n, m + 1]))

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=11518123x2+160x360x4+e2/x(128x+6x22x3)x2dx=115(2e2/x(6+4x3x2+x3)x2+18123x2+160x360x4x2)dx=11518123x2+160x360x4x2dx215e2/x(6+4x3x2+x3)x2dx=115(123+18x2+160x60x2)dx215(3e2/x6e2/xx2+4e2/xx+e2/xx)dx=65x41x5+16x234x33215e2/xxdx+25e2/xdx815e2/xxdx+45e2/xx2dx=2e2/x565x41x5+25e2/xx+16x23115e2/xx24x33+8Ei(2x)15215e2/xdx+45e2/xxdx=2e2/x565x41x5+415e2/xx+16x23115e2/xx24x334Ei(2x)15415e2/xxdx=2e2/x565x41x5+415e2/xx+16x23115e2/xx24x33

________________________________________________________________________________________

Mathematica [A]  time = 0.06, size = 50, normalized size = 1.52 65x41x5+16x234x33215e2/x(32x+x22)

Antiderivative was successfully verified.

[In]

Integrate[(18 - 123*x^2 + 160*x^3 - 60*x^4 + E^(2/x)*(12 - 8*x + 6*x^2 - 2*x^3))/(15*x^2),x]

[Out]

-6/(5*x) - (41*x)/5 + (16*x^2)/3 - (4*x^3)/3 - (2*E^(2/x)*(3 - 2*x + x^2/2))/15

________________________________________________________________________________________

fricas [A]  time = 0.78, size = 41, normalized size = 1.24 20x480x3+123x2+(x34x2+6x)e2x+1815x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/15*((-2*x^3+6*x^2-8*x+12)*exp(2/x)-60*x^4+160*x^3-123*x^2+18)/x^2,x, algorithm="fricas")

[Out]

-1/15*(20*x^4 - 80*x^3 + 123*x^2 + (x^3 - 4*x^2 + 6*x)*e^(2/x) + 18)/x

________________________________________________________________________________________

giac [A]  time = 0.24, size = 54, normalized size = 1.64 115x3(e2xx80x4e2xx2+123x2+6e2xx3+18x4+20)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/15*((-2*x^3+6*x^2-8*x+12)*exp(2/x)-60*x^4+160*x^3-123*x^2+18)/x^2,x, algorithm="giac")

[Out]

-1/15*x^3*(e^(2/x)/x - 80/x - 4*e^(2/x)/x^2 + 123/x^2 + 6*e^(2/x)/x^3 + 18/x^4 + 20)

________________________________________________________________________________________

maple [A]  time = 0.06, size = 38, normalized size = 1.15




method result size



risch 4x33+16x2341x565x+(x2+4x6)e2x15 38
derivativedivides 65x4x33+16x2341x5x2e2x15+4xe2x152e2x5 48
default 65x4x33+16x2341x5x2e2x15+4xe2x152e2x5 48
norman 6541x25+16x334x432xe2x5+4x2e2x15x3e2x15x 53



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/15*((-2*x^3+6*x^2-8*x+12)*exp(2/x)-60*x^4+160*x^3-123*x^2+18)/x^2,x,method=_RETURNVERBOSE)

[Out]

-4/3*x^3+16/3*x^2-41/5*x-6/5/x+1/15*(-x^2+4*x-6)*exp(2/x)

________________________________________________________________________________________

maxima [C]  time = 0.40, size = 53, normalized size = 1.61 43x3+163x2415x65x+815Ei(2x)25e2x45Γ(1,2x)815Γ(2,2x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/15*((-2*x^3+6*x^2-8*x+12)*exp(2/x)-60*x^4+160*x^3-123*x^2+18)/x^2,x, algorithm="maxima")

[Out]

-4/3*x^3 + 16/3*x^2 - 41/5*x - 6/5/x + 8/15*Ei(2/x) - 2/5*e^(2/x) - 4/5*gamma(-1, -2/x) - 8/15*gamma(-2, -2/x)

________________________________________________________________________________________

mupad [B]  time = 3.04, size = 46, normalized size = 1.39 x(4e2/x15415)2e2/x5x2(e2/x15163)65x4x33

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-((exp(2/x)*(8*x - 6*x^2 + 2*x^3 - 12))/15 + (41*x^2)/5 - (32*x^3)/3 + 4*x^4 - 6/5)/x^2,x)

[Out]

x*((4*exp(2/x))/15 - 41/5) - (2*exp(2/x))/5 - x^2*(exp(2/x)/15 - 16/3) - 6/(5*x) - (4*x^3)/3

________________________________________________________________________________________

sympy [A]  time = 0.16, size = 37, normalized size = 1.12 4x33+16x2341x5+(x2+4x6)e2x1565x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/15*((-2*x**3+6*x**2-8*x+12)*exp(2/x)-60*x**4+160*x**3-123*x**2+18)/x**2,x)

[Out]

-4*x**3/3 + 16*x**2/3 - 41*x/5 + (-x**2 + 4*x - 6)*exp(2/x)/15 - 6/(5*x)

________________________________________________________________________________________