3.41.83
Optimal. Leaf size=33
________________________________________________________________________________________
Rubi [A] time = 0.18, antiderivative size = 64, normalized size of antiderivative = 1.94,
number of steps used = 14, number of rules used = 7, integrand size = 47, = 0.149, Rules used
= {12, 14, 6742, 2206, 2210, 2209, 2214}
Antiderivative was successfully verified.
[In]
Int[(18 - 123*x^2 + 160*x^3 - 60*x^4 + E^(2/x)*(12 - 8*x + 6*x^2 - 2*x^3))/(15*x^2),x]
[Out]
(-2*E^(2/x))/5 - 6/(5*x) - (41*x)/5 + (4*E^(2/x)*x)/15 + (16*x^2)/3 - (E^(2/x)*x^2)/15 - (4*x^3)/3
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 14
Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
&& !LinearQ[u, x] && !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]
Rule 2206
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_)), x_Symbol] :> Simp[((c + d*x)*F^(a + b*(c + d*x)^n))/d, x]
- Dist[b*n*Log[F], Int[(c + d*x)^n*F^(a + b*(c + d*x)^n), x], x] /; FreeQ[{F, a, b, c, d}, x] && IntegerQ[2/n]
&& ILtQ[n, 0]
Rule 2209
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[((e + f*x)^n*
F^(a + b*(c + d*x)^n))/(b*f*n*(c + d*x)^n*Log[F]), x] /; FreeQ[{F, a, b, c, d, e, f, n}, x] && EqQ[m, n - 1] &
& EqQ[d*e - c*f, 0]
Rule 2210
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> Simp[(F^a*ExpIntegralEi[
b*(c + d*x)^n*Log[F]])/(f*n), x] /; FreeQ[{F, a, b, c, d, e, f, n}, x] && EqQ[d*e - c*f, 0]
Rule 2214
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^(m
+ 1)*F^(a + b*(c + d*x)^n))/(d*(m + 1)), x] - Dist[(b*n*Log[F])/(m + 1), Int[(c + d*x)^(m + n)*F^(a + b*(c +
d*x)^n), x], x] /; FreeQ[{F, a, b, c, d}, x] && IntegerQ[(2*(m + 1))/n] && LtQ[-4, (m + 1)/n, 5] && IntegerQ[n
] && ((GtQ[n, 0] && LtQ[m, -1]) || (GtQ[-n, 0] && LeQ[-n, m + 1]))
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 50, normalized size = 1.52
Antiderivative was successfully verified.
[In]
Integrate[(18 - 123*x^2 + 160*x^3 - 60*x^4 + E^(2/x)*(12 - 8*x + 6*x^2 - 2*x^3))/(15*x^2),x]
[Out]
-6/(5*x) - (41*x)/5 + (16*x^2)/3 - (4*x^3)/3 - (2*E^(2/x)*(3 - 2*x + x^2/2))/15
________________________________________________________________________________________
fricas [A] time = 0.78, size = 41, normalized size = 1.24
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/15*((-2*x^3+6*x^2-8*x+12)*exp(2/x)-60*x^4+160*x^3-123*x^2+18)/x^2,x, algorithm="fricas")
[Out]
-1/15*(20*x^4 - 80*x^3 + 123*x^2 + (x^3 - 4*x^2 + 6*x)*e^(2/x) + 18)/x
________________________________________________________________________________________
giac [A] time = 0.24, size = 54, normalized size = 1.64
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/15*((-2*x^3+6*x^2-8*x+12)*exp(2/x)-60*x^4+160*x^3-123*x^2+18)/x^2,x, algorithm="giac")
[Out]
-1/15*x^3*(e^(2/x)/x - 80/x - 4*e^(2/x)/x^2 + 123/x^2 + 6*e^(2/x)/x^3 + 18/x^4 + 20)
________________________________________________________________________________________
maple [A] time = 0.06, size = 38, normalized size = 1.15
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
derivativedivides |
|
|
default |
|
|
norman |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(1/15*((-2*x^3+6*x^2-8*x+12)*exp(2/x)-60*x^4+160*x^3-123*x^2+18)/x^2,x,method=_RETURNVERBOSE)
[Out]
-4/3*x^3+16/3*x^2-41/5*x-6/5/x+1/15*(-x^2+4*x-6)*exp(2/x)
________________________________________________________________________________________
maxima [C] time = 0.40, size = 53, normalized size = 1.61
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/15*((-2*x^3+6*x^2-8*x+12)*exp(2/x)-60*x^4+160*x^3-123*x^2+18)/x^2,x, algorithm="maxima")
[Out]
-4/3*x^3 + 16/3*x^2 - 41/5*x - 6/5/x + 8/15*Ei(2/x) - 2/5*e^(2/x) - 4/5*gamma(-1, -2/x) - 8/15*gamma(-2, -2/x)
________________________________________________________________________________________
mupad [B] time = 3.04, size = 46, normalized size = 1.39
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-((exp(2/x)*(8*x - 6*x^2 + 2*x^3 - 12))/15 + (41*x^2)/5 - (32*x^3)/3 + 4*x^4 - 6/5)/x^2,x)
[Out]
x*((4*exp(2/x))/15 - 41/5) - (2*exp(2/x))/5 - x^2*(exp(2/x)/15 - 16/3) - 6/(5*x) - (4*x^3)/3
________________________________________________________________________________________
sympy [A] time = 0.16, size = 37, normalized size = 1.12
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/15*((-2*x**3+6*x**2-8*x+12)*exp(2/x)-60*x**4+160*x**3-123*x**2+18)/x**2,x)
[Out]
-4*x**3/3 + 16*x**2/3 - 41*x/5 + (-x**2 + 4*x - 6)*exp(2/x)/15 - 6/(5*x)
________________________________________________________________________________________