3.41.84 e1log4(2x5x6+(2xx2)log(36))(40x424x5+(88x)log(36))(2x5+x6+(2x+x2)log(36))log5(2x5x6+(2xx2)log(36))dx

Optimal. Leaf size=18 e1log4((2x)x(x4+log(36)))

________________________________________________________________________________________

Rubi [F]  time = 5.06, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} e1log4(2x5x6+(2xx2)log(36))(40x424x5+(88x)log(36))(2x5+x6+(2x+x2)log(36))log5(2x5x6+(2xx2)log(36))dx

Verification is not applicable to the result.

[In]

Int[(E^Log[2*x^5 - x^6 + (2*x - x^2)*Log[36]]^(-4)*(40*x^4 - 24*x^5 + (8 - 8*x)*Log[36]))/((-2*x^5 + x^6 + (-2
*x + x^2)*Log[36])*Log[2*x^5 - x^6 + (2*x - x^2)*Log[36]]^5),x]

[Out]

-4*Defer[Int][E^Log[-((-2 + x)*x*(x^4 + Log[36]))]^(-4)/((-2 + x)*Log[-((-2 + x)*x*(x^4 + Log[36]))]^5), x] -
4*Defer[Int][E^Log[-((-2 + x)*x*(x^4 + Log[36]))]^(-4)/(x*Log[-((-2 + x)*x*(x^4 + Log[36]))]^5), x] + 4*Defer[
Int][E^Log[-((-2 + x)*x*(x^4 + Log[36]))]^(-4)/((-x + (-Log[36])^(1/4))*Log[-((-2 + x)*x*(x^4 + Log[36]))]^5),
 x] - 4*Defer[Int][E^Log[-((-2 + x)*x*(x^4 + Log[36]))]^(-4)/((x + (-Log[36])^(1/4))*Log[-((-2 + x)*x*(x^4 + L
og[36]))]^5), x] + 4*Defer[Int][E^Log[-((-2 + x)*x*(x^4 + Log[36]))]^(-4)/((-x - (-1)^(3/4)*Log[36]^(1/4))*Log
[-((-2 + x)*x*(x^4 + Log[36]))]^5), x] - 4*Defer[Int][E^Log[-((-2 + x)*x*(x^4 + Log[36]))]^(-4)/((x - (-1)^(3/
4)*Log[36]^(1/4))*Log[-((-2 + x)*x*(x^4 + Log[36]))]^5), x]

Rubi steps

integral=8e1log4(((2+x)x(x4+log(36))))(5x4+3x5log(36)+xlog(36))(2x)x(x4+log(36))log5(((2+x)x(x4+log(36))))dx=8e1log4(((2+x)x(x4+log(36))))(5x4+3x5log(36)+xlog(36))(2x)x(x4+log(36))log5(((2+x)x(x4+log(36))))dx=8(e1log4(((2+x)x(x4+log(36))))2(2+x)log5(((2+x)x(x4+log(36))))e1log4(((2+x)x(x4+log(36))))2xlog5(((2+x)x(x4+log(36))))2e1log4(((2+x)x(x4+log(36))))x3(x4+log(36))log5(((2+x)x(x4+log(36)))))dx=(4e1log4(((2+x)x(x4+log(36))))(2+x)log5(((2+x)x(x4+log(36))))dx)4e1log4(((2+x)x(x4+log(36))))xlog5(((2+x)x(x4+log(36))))dx16e1log4(((2+x)x(x4+log(36))))x3(x4+log(36))log5(((2+x)x(x4+log(36))))dx=(4e1log4(((2+x)x(x4+log(36))))(2+x)log5(((2+x)x(x4+log(36))))dx)4e1log4(((2+x)x(x4+log(36))))xlog5(((2+x)x(x4+log(36))))dx16(e1log4(((2+x)x(x4+log(36))))x2(x2ilog(36))log5(((2+x)x(x4+log(36))))+e1log4(((2+x)x(x4+log(36))))x2(x2+ilog(36))log5(((2+x)x(x4+log(36)))))dx=(4e1log4(((2+x)x(x4+log(36))))(2+x)log5(((2+x)x(x4+log(36))))dx)4e1log4(((2+x)x(x4+log(36))))xlog5(((2+x)x(x4+log(36))))dx8e1log4(((2+x)x(x4+log(36))))x(x2ilog(36))log5(((2+x)x(x4+log(36))))dx8e1log4(((2+x)x(x4+log(36))))x(x2+ilog(36))log5(((2+x)x(x4+log(36))))dx=(4e1log4(((2+x)x(x4+log(36))))(2+x)log5(((2+x)x(x4+log(36))))dx)4e1log4(((2+x)x(x4+log(36))))xlog5(((2+x)x(x4+log(36))))dx8(e1log4(((2+x)x(x4+log(36))))2(x+log(36)4)log5(((2+x)x(x4+log(36))))+e1log4(((2+x)x(x4+log(36))))2(x+log(36)4)log5(((2+x)x(x4+log(36)))))dx8(e1log4(((2+x)x(x4+log(36))))2(x(1)3/4log(36)4)log5(((2+x)x(x4+log(36))))+e1log4(((2+x)x(x4+log(36))))2(x(1)3/4log(36)4)log5(((2+x)x(x4+log(36)))))dx=(4e1log4(((2+x)x(x4+log(36))))(2+x)log5(((2+x)x(x4+log(36))))dx)4e1log4(((2+x)x(x4+log(36))))xlog5(((2+x)x(x4+log(36))))dx+4e1log4(((2+x)x(x4+log(36))))(x+log(36)4)log5(((2+x)x(x4+log(36))))dx4e1log4(((2+x)x(x4+log(36))))(x+log(36)4)log5(((2+x)x(x4+log(36))))dx+4e1log4(((2+x)x(x4+log(36))))(x(1)3/4log(36)4)log5(((2+x)x(x4+log(36))))dx4e1log4(((2+x)x(x4+log(36))))(x(1)3/4log(36)4)log5(((2+x)x(x4+log(36))))dx

________________________________________________________________________________________

Mathematica [A]  time = 0.88, size = 17, normalized size = 0.94 e1log4(((2+x)x(x4+log(36))))

Antiderivative was successfully verified.

[In]

Integrate[(E^Log[2*x^5 - x^6 + (2*x - x^2)*Log[36]]^(-4)*(40*x^4 - 24*x^5 + (8 - 8*x)*Log[36]))/((-2*x^5 + x^6
 + (-2*x + x^2)*Log[36])*Log[2*x^5 - x^6 + (2*x - x^2)*Log[36]]^5),x]

[Out]

E^Log[-((-2 + x)*x*(x^4 + Log[36]))]^(-4)

________________________________________________________________________________________

fricas [A]  time = 0.55, size = 26, normalized size = 1.44 e(1log(x6+2x52(x22x)log(6))4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*(-8*x+8)*log(6)-24*x^5+40*x^4)*exp(1/log(2*(-x^2+2*x)*log(6)-x^6+2*x^5)^4)/(2*(x^2-2*x)*log(6)+x^
6-2*x^5)/log(2*(-x^2+2*x)*log(6)-x^6+2*x^5)^5,x, algorithm="fricas")

[Out]

e^(log(-x^6 + 2*x^5 - 2*(x^2 - 2*x)*log(6))^(-4))

________________________________________________________________________________________

giac [A]  time = 0.13, size = 27, normalized size = 1.50 e(1log(x6+2x52x2log(6)+4xlog(6))4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*(-8*x+8)*log(6)-24*x^5+40*x^4)*exp(1/log(2*(-x^2+2*x)*log(6)-x^6+2*x^5)^4)/(2*(x^2-2*x)*log(6)+x^
6-2*x^5)/log(2*(-x^2+2*x)*log(6)-x^6+2*x^5)^5,x, algorithm="giac")

[Out]

e^(log(-x^6 + 2*x^5 - 2*x^2*log(6) + 4*x*log(6))^(-4))

________________________________________________________________________________________

maple [A]  time = 0.04, size = 32, normalized size = 1.78




method result size



risch e1ln(2(x2+2x)(ln(2)+ln(3))x6+2x5)4 32



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*(-8*x+8)*ln(6)-24*x^5+40*x^4)*exp(1/ln(2*(-x^2+2*x)*ln(6)-x^6+2*x^5)^4)/(2*(x^2-2*x)*ln(6)+x^6-2*x^5)/l
n(2*(-x^2+2*x)*ln(6)-x^6+2*x^5)^5,x,method=_RETURNVERBOSE)

[Out]

exp(1/ln(2*(-x^2+2*x)*(ln(2)+ln(3))-x^6+2*x^5)^4)

________________________________________________________________________________________

maxima [B]  time = 0.76, size = 1148, normalized size = 63.78 result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*(-8*x+8)*log(6)-24*x^5+40*x^4)*exp(1/log(2*(-x^2+2*x)*log(6)-x^6+2*x^5)^4)/(2*(x^2-2*x)*log(6)+x^
6-2*x^5)/log(2*(-x^2+2*x)*log(6)-x^6+2*x^5)^5,x, algorithm="maxima")

[Out]

3*x^5*e^(1/(log(x^4 + 2*log(3) + 2*log(2))^4 + 4*(log(x^4 + 2*log(3) + 2*log(2)) + log(-x + 2))*log(x)^3 + log
(x)^4 + 4*log(x^4 + 2*log(3) + 2*log(2))^3*log(-x + 2) + 6*log(x^4 + 2*log(3) + 2*log(2))^2*log(-x + 2)^2 + 4*
log(x^4 + 2*log(3) + 2*log(2))*log(-x + 2)^3 + log(-x + 2)^4 + 6*(log(x^4 + 2*log(3) + 2*log(2))^2 + 2*log(x^4
 + 2*log(3) + 2*log(2))*log(-x + 2) + log(-x + 2)^2)*log(x)^2 + 4*(log(x^4 + 2*log(3) + 2*log(2))^3 + 3*log(x^
4 + 2*log(3) + 2*log(2))^2*log(-x + 2) + 3*log(x^4 + 2*log(3) + 2*log(2))*log(-x + 2)^2 + log(-x + 2)^3)*log(x
)))/(3*x^5 - 5*x^4 + 2*x*(log(3) + log(2)) - 2*log(3) - 2*log(2)) - 5*x^4*e^(1/(log(x^4 + 2*log(3) + 2*log(2))
^4 + 4*(log(x^4 + 2*log(3) + 2*log(2)) + log(-x + 2))*log(x)^3 + log(x)^4 + 4*log(x^4 + 2*log(3) + 2*log(2))^3
*log(-x + 2) + 6*log(x^4 + 2*log(3) + 2*log(2))^2*log(-x + 2)^2 + 4*log(x^4 + 2*log(3) + 2*log(2))*log(-x + 2)
^3 + log(-x + 2)^4 + 6*(log(x^4 + 2*log(3) + 2*log(2))^2 + 2*log(x^4 + 2*log(3) + 2*log(2))*log(-x + 2) + log(
-x + 2)^2)*log(x)^2 + 4*(log(x^4 + 2*log(3) + 2*log(2))^3 + 3*log(x^4 + 2*log(3) + 2*log(2))^2*log(-x + 2) + 3
*log(x^4 + 2*log(3) + 2*log(2))*log(-x + 2)^2 + log(-x + 2)^3)*log(x)))/(3*x^5 - 5*x^4 + 2*x*(log(3) + log(2))
 - 2*log(3) - 2*log(2)) + 2*x*e^(1/(log(x^4 + 2*log(3) + 2*log(2))^4 + 4*(log(x^4 + 2*log(3) + 2*log(2)) + log
(-x + 2))*log(x)^3 + log(x)^4 + 4*log(x^4 + 2*log(3) + 2*log(2))^3*log(-x + 2) + 6*log(x^4 + 2*log(3) + 2*log(
2))^2*log(-x + 2)^2 + 4*log(x^4 + 2*log(3) + 2*log(2))*log(-x + 2)^3 + log(-x + 2)^4 + 6*(log(x^4 + 2*log(3) +
 2*log(2))^2 + 2*log(x^4 + 2*log(3) + 2*log(2))*log(-x + 2) + log(-x + 2)^2)*log(x)^2 + 4*(log(x^4 + 2*log(3)
+ 2*log(2))^3 + 3*log(x^4 + 2*log(3) + 2*log(2))^2*log(-x + 2) + 3*log(x^4 + 2*log(3) + 2*log(2))*log(-x + 2)^
2 + log(-x + 2)^3)*log(x)))*log(6)/(3*x^5 - 5*x^4 + 2*x*(log(3) + log(2)) - 2*log(3) - 2*log(2)) - 2*e^(1/(log
(x^4 + 2*log(3) + 2*log(2))^4 + 4*(log(x^4 + 2*log(3) + 2*log(2)) + log(-x + 2))*log(x)^3 + log(x)^4 + 4*log(x
^4 + 2*log(3) + 2*log(2))^3*log(-x + 2) + 6*log(x^4 + 2*log(3) + 2*log(2))^2*log(-x + 2)^2 + 4*log(x^4 + 2*log
(3) + 2*log(2))*log(-x + 2)^3 + log(-x + 2)^4 + 6*(log(x^4 + 2*log(3) + 2*log(2))^2 + 2*log(x^4 + 2*log(3) + 2
*log(2))*log(-x + 2) + log(-x + 2)^2)*log(x)^2 + 4*(log(x^4 + 2*log(3) + 2*log(2))^3 + 3*log(x^4 + 2*log(3) +
2*log(2))^2*log(-x + 2) + 3*log(x^4 + 2*log(3) + 2*log(2))*log(-x + 2)^2 + log(-x + 2)^3)*log(x)))*log(6)/(3*x
^5 - 5*x^4 + 2*x*(log(3) + log(2)) - 2*log(3) - 2*log(2))

________________________________________________________________________________________

mupad [B]  time = 3.84, size = 27, normalized size = 1.50 e1ln(x6+2x52ln(6)x2+4ln(6)x)4

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(1/log(2*log(6)*(2*x - x^2) + 2*x^5 - x^6)^4)*(2*log(6)*(8*x - 8) - 40*x^4 + 24*x^5))/(log(2*log(6)*(2
*x - x^2) + 2*x^5 - x^6)^5*(2*log(6)*(2*x - x^2) + 2*x^5 - x^6)),x)

[Out]

exp(1/log(4*x*log(6) - 2*x^2*log(6) + 2*x^5 - x^6)^4)

________________________________________________________________________________________

sympy [A]  time = 0.65, size = 26, normalized size = 1.44 e1log(x6+2x5+(2x2+4x)log(6))4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*(-8*x+8)*ln(6)-24*x**5+40*x**4)*exp(1/ln(2*(-x**2+2*x)*ln(6)-x**6+2*x**5)**4)/(2*(x**2-2*x)*ln(6)
+x**6-2*x**5)/ln(2*(-x**2+2*x)*ln(6)-x**6+2*x**5)**5,x)

[Out]

exp(log(-x**6 + 2*x**5 + (-2*x**2 + 4*x)*log(6))**(-4))

________________________________________________________________________________________